|
|
|
Список литературы
|
|
|
1. |
Zaremba S. K., “La méthode des “bons treillis” pour le calcul des intégrales multiples”, Applications of number theory to numerical analysis, Proc. Symp. (Montreal, 1971), Acad. Press, New York, 1972, 39–119 |
2. |
Bourgain J., Kontorovich A., “On Zaremba's conjecture”, Ann. Math. Ser. 2, 180:1 (2014), 137–196 |
3. |
Moshchevitin N., On some open problems in Diophantine approximation, E-print, 2012, arXiv: 1202.4539v4[math.NT] |
4. |
Frolenkov D. A., Kan I. D., A reinforcement of the Bourgain–Kontorovich's theorem by elementary methods, E-print, 2012, arXiv: 1207.4546[math.NT] |
5. |
Frolenkov D. A., Kan I. D., A reinforcement of the Bourgain–Kontorovich's theorem, E-print, 2012, arXiv: 1207.5168[math.NT] |
6. |
Кан И. Д., Фроленков Д. А., “Усиление теоремы Бургейна–Конторовича”, Из. РАН. Сер. мат., 78:2 (2014), 87–144 |
7. |
Frolenkov D. A., Kan I. D., “A strengthening of a theorem of Bourgain–Kontorovich. II”, Moscow J. Comb. Number Theory, 4:1 (2014), 78–117 |
8. |
Кан И. Д., “Усиление теоремы Бургейна–Конторовича. III”, Изв. РАН. Сер. мат., 79:2 (2015), 77–100 |
9. |
Huang S., “An improvement to Zaremba's conjecture”, Geom. Funct. Anal., 25:3 (2015), 860–914 |
10. |
Кан И. Д., “Усиление теоремы Бургейна–Конторовича. IV”, Изв. РАН. Сер. мат., 80:6 (2016), 103–126 |
11. |
Magee M., Oh H., Winter D., Uniform congruence counting for Schottky semigroups in $\mathrm {SL}_2(\mathbf Z)$, E-print, 2016, arXiv: 1601.03705v2[math.NT] |
12. |
Вон Р., Метод Харди–Литтлвуда, Мир, М., 1985 |