RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova

Trudy Mat. Inst. Steklova, 2021, Volume 313, Pages 263–274 (Mi tm4184)

Derivation of the Redfield Quantum Master Equation and Corrections to It by the Bogoliubov Method
A. S. Trushechkin

References

1. Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002  mathscinet  zmath
2. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, J. Wiley & Sons, New York, 1975  mathscinet  zmath  adsnasa
3. N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics, North-Holland, Amsterdam, 1962  mathscinet  mathscinet
4. Bogolyubov N.N., Gurov K.P., “Kineticheskie uravneniya v kvantovoi mekhanike”, ZhETF, 17:7 (1947), 614–628
5. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002  mathscinet  zmath
6. Chruściński D., Pascazio S., “A brief history of the GKLS equation”, Open Syst. Inf. Dyn., 24:3 (2017), 1740001  crossref  mathscinet  zmath  elib
7. Davies E.B., “Markovian master equations”, Commun. Math. Phys., 39 (1974), 91–110  crossref  mathscinet  zmath  adsnasa
8. Dümcke R., “Convergence of multitime correlation functions in the weak and singular coupling limits”, J. Math. Phys., 24:2 (1983), 311–315  crossref  mathscinet  adsnasa
9. Garraway B.M., “Nonperturbative decay of an atomic system in a cavity”, Phys. Rev. A, 55:3 (1997), 2290–2303  crossref  mathscinet  adsnasa
10. Garraway B.M., “Decay of an atom coupled strongly to a reservoir”, Phys. Rev. A, 55:6 (1997), 4636–4639  crossref  adsnasa
11. A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, de Gruyter Stud. Math. Phys., 16, de Gruyter, Berlin, 2012  mathscinet  zmath
12. Jang S., Cao J., Silbey R.J., “Fourth-order quantum master equation and its Markovian bath limit”, J. Chem. Phys., 116:7 (2002), 2705–2717  crossref  adsnasa
13. Lax M., “Formal theory of quantum fluctuations from a driven state”, Phys. Rev., 129:5 (1963), 2342–2348  crossref  mathscinet  adsnasa
14. Li L., Hall M.J.W., Wiseman H.M., “Concepts of quantum non-Markovianity: A hierarchy”, Phys. Rep., 759 (2018), 1–51  crossref  mathscinet  zmath  adsnasa
15. Lo Gullo N., Sinayskiy I., Busch Th., Petruccione F., Non-Markovianity criteria for open system dynamics, E-print, 2014, arXiv: 1401.1126 [quant-ph]
16. Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, New York, 2011  mathscinet  zmath
17. Pechen A.N., Volovich I.V., “Quantum multipole noise and generalized quantum stochastic equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:4 (2002), 441–464  crossref  mathscinet  zmath
18. Redfield A.G., “The theory of relaxation processes”, Adv. Magn. Opt. Reson., 1 (1965), 1–32  crossref
19. Richter M., Mukamel S., “Relaxation processes in systems strongly coupled to a harmonic bath”, J. Mod. Opt., 57:19 (2010), 2004–2008  crossref  zmath  adsnasa  elib
20. Rivas Á., Huelga S.F., Open quantum systems: An introduction, Springer, Heidelberg, 2012  mathscinet  zmath
21. Spohn H., “Kinetic equations from Hamiltonian dynamics: Markovian limits”, Rev. Mod. Phys., 52:3 (1980), 569–615  crossref  mathscinet  adsnasa
22. Spohn H., Large scale dynamics of interacting particles, Springer, Berlin, 1991  zmath
23. Suárez A., Silbey R., Oppenheim I., “Memory effects in the relaxation of quantum open systems”, J. Chem. Phys., 97:7 (1992), 5101–5107  crossref  adsnasa
24. A. E. Teretenkov, “Pseudomode approach and vibronic non-Markovian phenomena in light-harvesting complexes”, Proc. Steklov Inst. Math., 306 (2019), 242–256  mathnet  crossref  mathscinet  zmath
25. Teretenkov A.E., “Non-Markovian evolution of multi-level system interacting with several reservoirs. Exact and approximate”, Lobachevskii J. Math., 40:10 (2019), 1587–1605  mathnet  crossref  mathscinet  zmath
26. Teretenkov A.E., Non-perturbative effects in corrections to quantum master equations arising in Bogolubov–van Hove limit, E-print, 2020, arXiv: 2008.02820 [quant-ph]
27. A. S. Trushechkin, “Dynamics of reservoir observables within the Zwanzig projection operator method in the theory of open quantum systems”, Proc. Steklov Inst. Math., 306 (2019), 257–270  mathnet  crossref  mathscinet  zmath
28. Trushechkin A., “Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer”, J. Chem. Phys., 151:7 (2019), 074101  crossref  adsnasa
29. Trushechkin A., Unified GKLS quantum master equation beyond the secular approximation, E-print, 2021, arXiv: 2103.12042 [quant-ph]  zmath
30. Zwanzig R., “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341  crossref  mathscinet  adsnasa


© Steklov Math. Inst. of RAS, 2025