|
|
|
References
|
|
|
1. |
G. A. Bakay, “Large deviations for a terminating compound renewal process”, Theory Probab. Appl., 66:2 (2021), 209–227 |
2. |
G. A. Bakay and A. V. Shklyaev, “Large deviations of generalized renewal process”, Discrete Math. Appl., 30:4 (2020), 215–241 |
3. |
A. A. Borovkov, “On the Cramér transform, large deviations in boundary value problems, and the conditional invariance principle”, Sib. Math. J., 36:3 (1995), 417–434 |
4. |
A. A. Borovkov and A. A. Mogul'skii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682 |
5. |
A. A. Borovkov and A. A. Mogul'skii, “Limit theorems in the boundary hitting problem for a multidimensional random walk”, Sib. Math. J., 42:2 (2001), 245–270 |
6. |
A. A. Borovkov and A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. I”, Sib. Math. J., 59:3 (2018), 383–402 |
7. |
A. A. Borovkov and A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. II”, Sib. Math. J., 59:4 (2018), 578–597 |
8. |
Joutard C., “Strong large deviations for arbitrary sequences of random variables”, Ann. Inst. Stat. Math., 65:1 (2013), 49–67 |
9. |
M. V. Kozlov, “On large deviations of maximum of a Cramér random walk and the queueing process”, Theory Probab. Appl., 58:1 (2014), 76–106 |
10. |
Mogulskii A.A., “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. mat. izv., 16 (2019), 21–41 |
11. |
Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. I”, Sib. elektron. mat. izv., 15 (2018), 475–502 |
12. |
Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. II”, Sib. elektron. mat. izv., 15 (2018), 503–527 |
13. |
Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. III”, Sib. elektron. mat. izv., 15 (2018), 528–553 |
14. |
A. A. Mogul'skii and E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Sib. Adv. Math., 30:4 (2020), 284–302 |
15. |
A. V. Shklyaev, “Limit theorems for random walk under the assumption of maxima large deviation”, Theory Probab. Appl., 55:3 (2011), 517–525 |