RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova

Trudy Mat. Inst. Steklova, 2022, Volume 316, Pages 47–63 (Mi tm4207)

Characterization of Large Deviation Probabilities for Regenerative Sequences
G. A. Bakay

References

1. G. A. Bakay, “Large deviations for a terminating compound renewal process”, Theory Probab. Appl., 66:2 (2021), 209–227  mathnet  crossref  zmath
2. G. A. Bakay and A. V. Shklyaev, “Large deviations of generalized renewal process”, Discrete Math. Appl., 30:4 (2020), 215–241  mathnet  crossref  mathscinet  zmath
3. A. A. Borovkov, “On the Cramér transform, large deviations in boundary value problems, and the conditional invariance principle”, Sib. Math. J., 36:3 (1995), 417–434  mathnet  crossref  mathscinet  zmath
4. A. A. Borovkov and A. A. Mogul'skii, “The second rate function and the asymptotic problems of renewal and hitting the boundary for multidimensional random walks”, Sib. Math. J., 37:4 (1996), 647–682  mathnet  crossref  mathscinet  zmath
5. A. A. Borovkov and A. A. Mogul'skii, “Limit theorems in the boundary hitting problem for a multidimensional random walk”, Sib. Math. J., 42:2 (2001), 245–270  mathnet  crossref  mathscinet  zmath
6. A. A. Borovkov and A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. I”, Sib. Math. J., 59:3 (2018), 383–402  mathnet  crossref  mathscinet  zmath
7. A. A. Borovkov and A. A. Mogulskii, “Integro-local limit theorems for compound renewal processes under Cramér's condition. II”, Sib. Math. J., 59:4 (2018), 578–597  mathnet  crossref  mathscinet  zmath
8. Joutard C., “Strong large deviations for arbitrary sequences of random variables”, Ann. Inst. Stat. Math., 65:1 (2013), 49–67  crossref  mathscinet  zmath
9. M. V. Kozlov, “On large deviations of maximum of a Cramér random walk and the queueing process”, Theory Probab. Appl., 58:1 (2014), 76–106  mathnet  crossref  mathscinet  zmath  elib
10. Mogulskii A.A., “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. mat. izv., 16 (2019), 21–41  mathnet  zmath
11. Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. I”, Sib. elektron. mat. izv., 15 (2018), 475–502  mathnet  zmath
12. Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. II”, Sib. elektron. mat. izv., 15 (2018), 503–527  mathnet  zmath
13. Mogulskii A.A., Prokopenko E.I., “Integro-lokalnye teoremy dlya mnogomernykh obobschennykh protsessov vosstanovleniya pri momentnom uslovii Kramera. III”, Sib. elektron. mat. izv., 15 (2018), 528–553  mathnet  zmath
14. A. A. Mogul'skii and E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Sib. Adv. Math., 30:4 (2020), 284–302  mathnet  crossref  mathscinet
15. A. V. Shklyaev, “Limit theorems for random walk under the assumption of maxima large deviation”, Theory Probab. Appl., 55:3 (2011), 517–525  mathnet  crossref  mathscinet  zmath  elib


© Steklov Math. Inst. of RAS, 2025