|
|
|
References
|
|
|
1. |
A. S. Ambrosimov, “Asymptotic normality of sums of dependent random variables considered by B. A. Sevastyanov”, Theory Probab. Appl., 21:1 (1976), 183–187 |
2. |
Baldi P., Rinott Y., “On normal approximations of distributions in terms of dependency graphs”, Ann. Probab., 17:4 (1989), 1646–1650 |
3. |
S. M. Buravlev, “Matchings up to permutations in sequences of independent trials”, Discrete Math. Appl., 9:1 (1999), 53–78 |
4. |
S. M. Buravlev, “Matchings up to the permutations which form a Latin rectangle”, Discrete Math. Appl., 10:1 (2000), 23–48 |
5. |
Chen L.H.Y., Shao Q.-M., “Stein's method for normal approximation”, An introduction to Stein's method, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 4, ed. by A.D. Barbour, L.H.Y. Chen, World Scientific, River Edge, NJ, 2005, 1–59 |
6. |
A. M. Iksanov, A. V. Marynych, and V. A. Vatutin, “Weak convergence of finite-dimensional distributions of the number of empty boxes in the Bernoulli sieve”, Theory Probab. Appl., 59:1 (2015), 87–113 |
7. |
Janson S., “Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1988), 305–312 |
8. |
N. V. Klykova, “Limit distribution of a number of coinciding intervals”, Theory Probab. Appl., 47:1 (2003), 151–156 |
9. |
V. F. Kolchin, B. A. Sevast'yanov, and V. P. Chistyakov, Random Allocations, J. Wiley & Sons, New York, 1978 |
10. |
Kopyttsev V.A., “Predelnye teoremy o normalnom raspredelenii dlya chisla reshenii nelineinykh vklyuchenii”, Mat. vopr. kriptogr., 11:4 (2020), 77–96 |
11. |
V. A. Kopyttsev and V. G. Mikhailov, “Poisson-type theorems for the number of special solutions of a random linear inclusion”, Discrete Math. Appl., 20:2 (2010), 191–211 |
12. |
V. I. Kruglov, “Limit distributions of the number of vectors satisfying a linear relation”, Discrete Math. Appl., 18:5 (2008), 465–481 |
13. |
V. G. Mikhailov, “Limit distribution of random variables associated with multiple long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 180–184 |
14. |
V. G. Mikhailov, “A Poisson limit theorem in the scheme of group disposal of particles”, Theory Probab. Appl., 22:1 (1977), 152–156 |
15. |
V. G. Mikhailov, “An estimate of the rate of convergence to the Poisson distribution in group allocation of particles”, Theory Probab. Appl., 22:3 (1978), 554–562 |
16. |
V. G. Mikhailov and A. M. Shoitov, “Structural equivalence of $s$-tuples in random discrete sequences”, Discrete Math. Appl., 13:6 (2003), 541–568 |
17. |
V. G. Mikhailov, A. M. Shoitov, and A. V. Volgin, “On series of $H$-equivalent tuples in Markov chains”, Proc. Steklov Inst. Math., 316 (2022), 254–268 |
18. |
V. N. Sachkov, Probabilistic Methods in Combinatorial Analysis, Encycl. Math. Appl., 56, Cambridge Univ. Press, Cambridge, 1997 |
19. |
B. A. Sevast'yanov, “Poisson limit law for a scheme of sums of dependent random variables”, Theory Probab. Appl., 17:4 (1973), 695–699 |
20. |
A. N. Shiryaev, Probability–1, Grad. Texts Math., 95, Springer, New York, 2016 |
21. |
I. S. Tyurin, “A refinement of the remainder in the Lyapunov theorem”, Theory Probab. Appl., 56:4 (2012), 693–696 |
22. |
V. A. Vatutin and V. G. Mikhailov, “Limit theorems for the number of empty cells in an equiprobable scheme for group allocation of particles”, Theory Probab. Appl., 27:4 (1983), 734–743 |
23. |
A. M. Zubkov, “Inequalities for the distribution of a sum of functions of independent random variables”, Math. Notes, 22:5 (1977), 906–914 |
24. |
A. M. Zubkov, “Inequalities for transition probabilities with taboos and their applications”, Math. USSR, Sb., 37:4 (1980), 451–488 |
25. |
Zubkov A.M., Ivchenko G.I., Medvedev Yu.I., “Korni proizvodyaschikh funktsii i summy tselochislennykh sluchainykh velichin”, Mat. vopr. kriptogr., 11:1 (2020), 27–46 |
26. |
A. M. Zubkov and V. G. Mikhailov, “Limit distributions of random variables associated with long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 172–179 |
27. |
A. M. Zubkov and V. G. Mikhailov, “Repetitions of $s$-tuples in a sequence of independent trials”, Theory Probab. Appl., 24:2 (1980), 269–282 |