|
|
|
Список литературы
|
|
|
1. |
Aoki T., “Locally bounded linear topological spaces”, Proc. Imp. Acad. Tokyo, 18:10 (1942), 588–594 |
2. |
Богачев В.И., Основы теории меры, т. 1, Регулярная и хаотическая динамика, М.; Ижевск, 2003; V. I. Bogachev, Measure Theory, v. 1, Springer, Berlin, 2007 |
3. |
Coifman R.R., Meyer Y., Stein E.M., “Some new function spaces and their applications to harmonic analysis”, J. Funct. Anal., 62:2 (1985), 304–335 |
4. |
Fefferman C., Stein E.M., “$H^p$ spaces of several variables”, Acta math., 129 (1972), 137–193 |
5. |
Grafakos L., Classical Fourier analysis, Grad. Texts Math., 249, 2nd ed., Springer, New York, 2008 |
6. |
Grafakos L., Classical Fourier analysis, Grad. Texts Math., 249, 3rd ed., Springer, New York, 2014 |
7. |
Grafakos L., Modern Fourier analysis, Grad. Texts Math., 250, 3rd ed., Springer, New York, 2014 |
8. |
Hardy G.H., Littlewood J.E., “A maximal theorem with function-theoretic applications”, Acta math., 54 (1930), 81–116 |
9. |
Кротов В.Г., “О граничном поведении функций из пространств типа Харди”, Изв. АН СССР. Сер. мат., 54:5 (1990), 957–974 ; V. G. Krotov, “On the boundary behavior of functions in spaces of Hardy type”, Math. USSR, Izv., 37:2 (1991), 303–320 |
10. |
Кротов В.Г., “Интерполяционная теорема Марцинкевича для пространств типа Харди”, Мат. заметки, 113:2 (2023), 311–315 ; V. G. Krotov, “Marcinkiewicz interpolation theorem for spaces of Hardy type”, Math. Notes, 113:1–2 (2023), 306–310 |
11. |
Liang Y.Y., Liu L.G., Yang D.C., “An off-diagonal Marcinkiewicz interpolation theorem on Lorentz spaces”, Acta math. Sin. Engl. Ser., 27:8 (2011), 1477–1488 |
12. |
Lorentz G.G., “Some new functional spaces”, Ann. Math. Ser. 2, 51:1 (1950), 37–55 |
13. |
Marcinkiewicz J., “Sur l'interpolation d'operations”, C. r. Acad. sci. Paris, 208 (1939), 1272–1273 |
14. |
Pipher J., Verchota G.C., “Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators”, Ann. Math. Ser. 2, 142:1 (1995), 1–38 |
15. |
Rolewicz S., Metric linear spaces, Math. Appl. East Eur. Ser., 20, 2nd ed., D. Reidel Publ. Co., Dordrecht, 1985 |
16. |
Рудин У., Теория функций в единичном шаре из $\mathbb C^n$, Мир, М., 1984 ; W. Rudin, Function Theory in the Unit Ball of $\mathbb C^n$, Springer, Berlin, 1980 |
17. |
Стейн И.М., Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973; E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970 |
18. |
Stein E.M., Weiss G., “An extension of a theorem of Marcinkiewicz and some of its applications”, J. Math. Mech., 8:2 (1959), 263–284 |
19. |
Стейн И., Вейс Г., Введение в гармонический анализ на евклидовых пространствах, Мир, М., 1974; E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 |
20. |
Verchota G., “The Dirichlet problem for the polyharmonic equation in Lipschitz domains”, Indiana Univ. Math. J., 39:3 (1990), 671–702 |
21. |
Zygmund A., “On a theorem of Marcinkiewicz concerning interpolation of operations”, J. math. pures appl., 35 (1956), 223–248 |
22. |
Зигмунд А., Тригонометрические ряды, т. 2, Мир, М., 1965; A. Zygmund, Trigonometric Series, v. 2, Univ. Press, Cambridge, 1959 |