RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova

Trudy Mat. Inst. Steklova, 2004, Volume 244, Pages 297–304 (Mi tm450)

Minimal Sets in Almost Equicontinuous Systems
W. Huang, Xiangdong Ye

References

1. Akin E., Auslander J., Berg K., “When is a transitive map chaotic?”, Convergence in ergodic theory and probability, Ohio State Univ. Math. Res. Inst. Publ., 5, W. de Gruyter, Berlin, 1996, 25–40  mathscinet  zmath
2. Akin E., Auslander J., Berg K., “Almost equicontinuity and the enveloping semigroup”, Contemp. Math., 215 (1998), 75–81  mathscinet  zmath
3. Akin E., Glasner E., “Residual properties and almost equicontinuity”, J. Anal. Math., 84 (2001), 243–286  crossref  mathscinet  zmath  adsnasa  isi
4. Blanchard F., Host B., Maass A., “Topological complexity”, Ergod. Th. and Dyn. Syst., 20 (2000), 641–662  crossref  mathscinet  zmath
5. Downarowicz T., “Weakly almost periodic flows and hidden eigenvalues”, Contemp. Math., 215 (1998), 101–120  mathscinet  zmath
6. Ellis R., Nerurkar M., “Weakly almost periodic flows”, Trans. Amer. Math. Soc., 313 (1989), 103–119  crossref  mathscinet  zmath  isi
7. Glasner E., Maon D., “Rigidity in topological dynamics”, Ergod. Th. and Dyn. Syst., 9 (1989), 309–320  mathscinet  zmath
8. Glasner E., Weiss B., “Sensitive dependence on initial conditions”, Nonlinearity, 6 (1993), 1067–1075  crossref  mathscinet  zmath  adsnasa  isi
9. Glasner E., Weiss B., “Locally equicontinuous dynamical systems”, Colloq. Math., 84 (2000), 345–361  mathscinet  zmath
10. Katznelson Y., Weiss B., “When all points are recurrent/generic”, Ergodic theory and dynamical systems, I, Progr. Math., 10, Birkhäuser, Boston, 1981, 195–210  mathscinet


© Steklov Math. Inst. of RAS, 2025