|
|
|
Список литературы
|
|
|
1. |
Agol I., “Bounds on exceptional Dehn filling”, Geom. Topol., 4 (2000), 431–449 |
2. |
Benedetti R., Petronio C., Lectures on hyperbolic geometry, Universitext, Springer, Berlin, 1992 |
3. |
Benedetti R., Petronio C., “A finite graphic calculus for 3-manifolds”, Manuscr. math., 88 (1995), 291–310 |
4. |
Callahan P.J., Hildebrand M.V., Weeks J.R., “A census of cusped hyperbolic 3-manifolds. With microfiche supplement”, Math. Comput., 68 (1999), 321–332 |
5. |
Casler B.G., “An imbedding theorem for connected 3-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–566 |
6. |
Cho Yu., Kim H., “On the volume formula for hyperbolic tetrahedra”, Discr. Comput. Geom., 22 (1999), 347–366 |
7. |
Connelly R., Sabitov I., Walz A., “The Bellows conjecture”, Contrib. Alg. and Geom., 38 (1997), 1–10 |
8. |
Costantino F., Frigerio R., Martelli B., Petronio C., Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling, arXiv.org: math.GT/0402339 |
9. |
Derevnin D.A., Mednykh A.D., On the volume of spherical Lambert cube, arXiv.org: math.MG/0212301 |
10. |
Деревнин Д.А., Медных А.Д., “О формуле объема гиперболического тетраэдра”, УМН, 60:2 (2005), 159–160 |
11. |
Деревнин Д.А., Медных А.Д., Пашкевич М.Г., “Объем симметричного тетраэдра в гиперболическом и сферическом пространствах”, Сиб. мат. журн., 45:5 (2004), 1022–1031 |
12. |
Epstein D.B.A., Penner R.C., “Euclidean decompositions of noncompact hyperbolic manifolds”, J. Diff. Geom., 27 (1988), 67–80 |
13. |
Fomenko A., Matveev S.V., Algorithmic and computer methods for three-manifolds, Math. and Appl., 425, Kluwer, Dordrecht, 1997 |
14. |
Frigerio R., Martelli B., Petronio C., “Complexity and Heegaard genus of an infinite class of hyperbolic 3-manifolds”, Pacif. J. Math., 210 (2003), 283–297 |
15. |
Frigerio R., Martelli B., Petronio C., “Dehn filling of cusped hyperbolic 3-manifolds with geodesic boundary”, J. Diff. Geom., 64 (2003), 425–455 |
16. |
Frigerio R., Martelli B., Petronio C., “Small hyperbolic 3-manifolds with geodesic boundary”, Exp. Math., 13 (2004), 171–184 |
17. |
Frigerio R., Petronio C., “Construction and recognition of hyperbolic 3-manifolds with geodesic boundary”, Trans. Amer. Math. Soc., 356 (2004), 3243–3282 |
18. |
Fujii M., “Hyperbolic 3-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra”, Tokyo J. Math., 13 (1990), 353–373 |
19. |
Gordon C.McA., “Small surfaces and Dehn filling”, Proc. Kirbyfest (Berkeley (CA), 1998), Geom. and Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 177–199 |
20. |
Gordon C.McA., Wu Y.Q., “Annular Dehn fillings”, Comment. Math. Helv., 75 (2000), 430–456 |
21. |
Gordon C.McA., Wu Y.Q., “Annular and boundary reducing Dehn fillings”, Topology, 39 (2000), 531–548 |
22. |
Wu-Yi Hsiang, “On infinitesimal symmetrization and volume formula for spherical or hyperbolic tetrahedrons”, Quart. J. Math. Oxford. Ser. 2, 39 (1988), 463–468 |
23. |
Johannson K., Homotopy equivalences of 3-manifolds with boundaries, Lect. Notes Math., 761, Springer, Berlin, 1979 |
24. |
Kellerhals R., “On the volume of hyperbolic polyhedra”, Math. Ann., 285 (1989), 541–569 |
25. |
Kojima S., “Isometry transformations of hyperbolic 3-manifolds”, Topol. and Appl., 29 (1988), 297–307 |
26. |
Kojima S., “Polyhedral decomposition of hyperbolic manifolds with boundary”, Proc. Work. Pure Math., 10 (1990), 37–57 |
27. |
Kojima S., “Polyhedral decomposition of hyperbolic 3-manifolds with totally geodesic boundary”, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., 20, Kinokuniya, Tokyo, 1992, 93–112 |
28. |
Lackenby M., “Word hyperbolic Dehn surgery”, Invent. math., 140 (2000), 243–282 |
29. |
Leibon G., Doyle P., 23040 symmetries of hyperbolic tetrahedra, arXiv.org: math.GT/0309187 |
30. |
Лобачевский Н.И., “Применения воображаемой геометрии к некоторым интегралам”, Полн. собр. соч., т. 3, Изд-во АН СССР, М.; Л., 1949, 181–294 |
31. |
Martelli B., Complexity of 3-manifolds, arXiv.org: math.GT/0405250 |
32. |
Martelli B., Petronio C., “3-manifolds up to complexity 9”, Exp. Math., 10 (2001), 207–236 |
33. |
Martin G.J., “The volume of regular tetrahedra and sphere packings in hyperbolic 3-space”, Math. Chron., 20 (1991), 127–147 |
34. |
Matveev S.V., “Complexity theory of three-dimensional manifolds”, Acta appl. math., 19 (1990), 101–130 |
35. |
Matveev S.V., Algorithmic topology and classification of 3-manifolds, Algorithms and Comput. Math., 9, Springer, Berlin, 2003 |
36. |
Mednykh A.D., Parker J., Vesnin A.Yu., On hyperbolic polyhedra arising as convex cores of quasi-Fuchsian punctured torus groups, RIM-GARC Preprint Ser. N 02-01, Seoul Nat. Univ., Seoul, 2002, 33 pp. |
37. |
Milnor J., “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc., 6 (1982), 9–24 |
38. |
Mohanty Y., “The Regge symmetry is a scissors congruence in hyperbolic space”, Alg. and Geom. Topol., 3 (2003), 1–31 |
39. |
Murakami J., Yano M., On the volume of a hyperbolic and spherical tetrahedron, http://www.f.waseda.jp/murakami/papers/tetrahedronrev3.pdf, 2001 |
40. |
Paoluzzi L., Zimmermann B., “On a class of hyperbolic 3-manifolds and groups with one defining relation”, Geom. Dedicata, 60 (1996), 113–123 |
41. |
Petronio C., “Ideal triangulations of hyperbolic 3-manifolds”, Boll. Un. Mat. Ital. Ser. 8. Sez. B: Artic. Ric. Mat., 3 (2000), 657–672 |
42. |
Rourke C., Sanderson B., Introduction to piecewise-linear topology, Ergebn. Math., 69, Springer, New York; Heidelberg, 1972 |
43. |
Сабитов И.Х., “Объем многогранника как функция длин его ребер”, Фунд. и прикл. математика, 2:1 (1996), 305–307 |
44. |
Sakuma M., Weeks J.R., “The generalized tilt formula”, Geom. Dedicata, 55 (1995), 115–123 |
45. |
Scharlemann M., “Heegaard splittings of 3-manifolds”, Low Dimensional Topology, New Stud. Adv. Math., 3, Intern. Press, Somerville (MA), 2003, 25–39 |
46. |
Schläfli L., Theorie der vielfachen Kontinuität, Gesamm. math. Abhandl., Birkhäuser, Basel, 1950 |
47. |
Thurston W.P., The geometry and topology of 3-manifolds, Mimeograph. notes, Princeton, 1979 |
48. |
Turaev V.G., Viro O., “State sum invariants of 3-manifolds and quantum $6j$-symbols”, Topology, 31 (1992), 865–902 |
49. |
Ushijima A., “A unified viewpoint about geometric objects in hyperbolic space and the generalized tilt formula”, Hyperbolic spaces and related topics. II (Kyoto, 1999), Sūrikaisekikenkyūsho Kōkyūroku, 1163, Kyoto Univ., Kyoto, 2000, 85–98 |
50. |
Ushijima A., “The tilt formula for generalized simplices in hyperbolic space”, Discr. Comput. Geom., 28 (2002), 19–27 |
51. |
Ushijima A., A volume formula for generalized hyperbolic tetrahedra, arXiv.org: math.GT/0309216 |
52. |
Vinberg E.B., Geometry. II: Spaces of constant curvature, Springer, New York, 1993 |
53. |
Weeks J.R., “Convex hulls and isometries of cusped hyperbolic 3-manifolds”, Topol. and Appl., 52 (1993), 127–149 |
54. |
Weeks J.R., SnapPea: The hyperbolic structures computer program, http://www.geometrygames.org |
55. |
Wu Y.Q., “Incompressibility of surfaces in surgered 3-manifolds”, Topology, 31 (1992), 271–279 |
56. |
Wu Y.Q., “Sutured manifold hierarchies, essential laminations, and Dehn surgery”, J. Diff. Geom., 48 (1998), 407–437 |
57. |
Petronio C., Home page, http://www.dm.unipi.it/pages/petronio/public_html/ |