RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya

Teor. Veroyatnost. i Primenen., 2019, Volume 64, Issue 1, Pages 36–52 (Mi tvp5168)

Integro-local CLT for sums of independent nonlattice random vectors
L. V. Rozovskii

References

1. C. Stone, “A local limit theorems for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36:2 (1965), 546–551  crossref  mathscinet  zmath
2. C. Stone, “On local and ratio limit theorems”, Proceedings of the 5th Berkeley symposium on mathematical statistics and probability (Berkeley, Calif., 1965/66), v. 2, Contributions to probability theory, Part 2, Univ. California Press, Berkeley, Calif., 1967, 217–224  mathscinet  zmath
3. A. A. Borovkov, A. A. Mogul'skii, “Integro-local theorems for sums of independent random vectors in the series scheme”, Math. Notes, 79:4 (2006), 468–482  mathnet  crossref  crossref  mathscinet  zmath
4. A. A. Borovkov, “Integro-local and local theorems on normal and large deviations of sums of nonidentically distributed random variables in the triangular array scheme”, Theory Probab. Appl., 54:4 (2010), 571–587  mathnet  crossref  crossref  mathscinet  zmath
5. A. A. Borovkov, “Generalization and refinement of the integro-local Stone theorem for sums of random vectors”, Theory Probab. Appl., 61:4 (2017), 590–612  mathnet  crossref  crossref  mathscinet  zmath
6. A. A. Borovkov, K. A. Borovkov, “A refined version of the integro-local Stone theorem”, Statist. Probab. Lett., 123 (2017), 153–159  crossref  mathscinet  zmath
7. R. N. Bhattacharya, R. Ranga Rao, Normal approximation and asymptotic expansions, Wiley Ser. Probab. Math. Statist., John Wiley & Sons, New York–London–Sydney, 1976, xiv+274 pp.  mathscinet  mathscinet  zmath  zmath
8. V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp.  crossref  mathscinet  mathscinet  zmath  zmath
9. L. V. Rozovskii, “Otsenki skorosti skhodimosti v “intervalnoi” TsPT dlya summ nezavisimykh sluchainykh vektorov”, Vestn. SPbGU. Ser. 1. Matem. Mekh. Astron., 4(62):3 (2017), 466–476  mathscinet
10. L. V. Rozovskii, “Ob asimptoticheskikh razlozheniyakh v “intervalnoi” TsPT dlya summ nezavisimykh sluchainykh vektorov”, Veroyatnost i statistika. 26, Zap. nauch. sem. POMI, 466, POMI, SPb., 2017, 273–288  mathnet  mathscinet
11. G. M. Fichtenholz, Differential- und Integralrechnung, v. III, Hochschulbücher für Math., 63, 12., ber. Aufl., Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992, 564 pp.  mathscinet  zmath
12. A. Bikyalis, “Asimptoticheskie razlozheniya dlya raspredelenii summ nezavisimykh nereshetchatykh sluchainykh vektorov”, Litovskii matem. sb., 10:4 (1970), 673–679  mathscinet  zmath
13. H. Cramer, Random variables and probability distributions, Cambridge Tracts in Math. and Math. Phys., 36, Cambridge Univ. Press, 1937, viii+121 pp.  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025