|
|
|
References
|
|
|
1. |
R. Aliyev, “On a stochastic process with a heavy tailed distributed component describing inventory model type of $(s,S)$”, Comm. Statist. Theory Methods, 46:5 (2017), 2571–2579 |
2. |
R. Aliyev, V. Bayramov, “On the asymptotic behaviour of the covariance function of the rewards of a multivariate renewal–reward process”, Statist. Probab. Lett., 127 (2017), 138–149 |
3. |
R. Aliyev, T. Khaniyev, B. Gever, “Weak convergence theorem for ergodic distribution of stochastic processes with discrete interference of chance and generalized reflecting barrier”, Theory Probab. Appl., 60:3 (2015), 502–513 |
4. |
R. T. Aliyev, T. A. Khaniyev, “On the limiting behavior of the characteristic function of the ergodic distribution of the semi-Markov walk with two boundaries”, Math. Notes, 102:4 (2017), 444–454 |
5. |
S. Asmussen, Ruin probabilities, Adv. Ser. Stat. Sci. Appl. Probab., 2, World Sci. Publ., River Edge, NJ, 2000, xii+385 pp. |
6. |
A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp. |
7. |
M. Brown, H. Solomon, “A second-order approximation for the variance of a renewal reward process”, Stochastic Process. Appl., 3:3 (1975), 301–314 |
8. |
S. Foss, D. Korshunov, S. Zachary, “Convolutions of long-tailed and subexponential distributions”, J. Appl. Probab., 46:3 (2009), 756–767 |
9. |
S. Foss, D. Korshunov, S. Zachary, An introduction to heavy-tailed and subexponential distributions, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2011, x+123 pp. |
10. |
J. L. Geluk, J. B. G. Frenk, “Renewal theory for random variables with a heavy tailed distribution and finite variance”, Statist. Probab. Lett., 81:1 (2011), 77–82 |
11. |
C. Klüppelberg, “Subexponential distributions and integrated tails”, J. Appl. Probab., 25:1 (1988), 132–141 |
12. |
B. Patch, Y. Nazarathy, T. Taimre, “A correction term for the covariance of renewal-reward processes with multivariate rewards”, Statist. Probab. Lett., 102 (2015), 1–7 |
13. |
L. Rabehasaina, Jae-Kyung Woo, “On a multivariate renewal-reward process involving time delays and discounting: applications to IBNR processes and infinite server queues”, Queueing Syst., 90:3-4 (2018), 307–350 |
14. |
S. M. Ross, Stochastic processes, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley & Sons, Inc., New York, 1996, xvi+510 pp. |