RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya

Teor. Veroyatnost. i Primenen., 2022, Volume 67, Issue 4, Pages 810–818 (Mi tvp5223)

On asymptotic expansion for mathematical expectation of a renewal–reward process with dependent components and heavy-tailed interarrival times
R. Aliyev, V. Bayramov

References

1. R. Aliyev, “On a stochastic process with a heavy tailed distributed component describing inventory model type of $(s,S)$”, Comm. Statist. Theory Methods, 46:5 (2017), 2571–2579  crossref  mathscinet  zmath
2. R. Aliyev, V. Bayramov, “On the asymptotic behaviour of the covariance function of the rewards of a multivariate renewal–reward process”, Statist. Probab. Lett., 127 (2017), 138–149  crossref  mathscinet  zmath
3. R. Aliyev, T. Khaniyev, B. Gever, “Weak convergence theorem for ergodic distribution of stochastic processes with discrete interference of chance and generalized reflecting barrier”, Theory Probab. Appl., 60:3 (2015), 502–513  mathnet  crossref  crossref  mathscinet  zmath
4. R. T. Aliyev, T. A. Khaniyev, “On the limiting behavior of the characteristic function of the ergodic distribution of the semi-Markov walk with two boundaries”, Math. Notes, 102:4 (2017), 444–454  mathnet  crossref  crossref  mathscinet  zmath
5. S. Asmussen, Ruin probabilities, Adv. Ser. Stat. Sci. Appl. Probab., 2, World Sci. Publ., River Edge, NJ, 2000, xii+385 pp.  crossref  mathscinet  zmath
6. A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp.  crossref  mathscinet  zmath
7. M. Brown, H. Solomon, “A second-order approximation for the variance of a renewal reward process”, Stochastic Process. Appl., 3:3 (1975), 301–314  crossref  mathscinet  zmath
8. S. Foss, D. Korshunov, S. Zachary, “Convolutions of long-tailed and subexponential distributions”, J. Appl. Probab., 46:3 (2009), 756–767  crossref  mathscinet  zmath
9. S. Foss, D. Korshunov, S. Zachary, An introduction to heavy-tailed and subexponential distributions, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2011, x+123 pp.  crossref  mathscinet  zmath
10. J. L. Geluk, J. B. G. Frenk, “Renewal theory for random variables with a heavy tailed distribution and finite variance”, Statist. Probab. Lett., 81:1 (2011), 77–82  crossref  mathscinet  zmath
11. C. Klüppelberg, “Subexponential distributions and integrated tails”, J. Appl. Probab., 25:1 (1988), 132–141  crossref  mathscinet  zmath
12. B. Patch, Y. Nazarathy, T. Taimre, “A correction term for the covariance of renewal-reward processes with multivariate rewards”, Statist. Probab. Lett., 102 (2015), 1–7  crossref  mathscinet  zmath
13. L. Rabehasaina, Jae-Kyung Woo, “On a multivariate renewal-reward process involving time delays and discounting: applications to IBNR processes and infinite server queues”, Queueing Syst., 90:3-4 (2018), 307–350  crossref  mathscinet  zmath
14. S. M. Ross, Stochastic processes, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley & Sons, Inc., New York, 1996, xvi+510 pp.  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025