RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya

Teor. Veroyatnost. i Primenen., 2020, Volume 65, Issue 2, Pages 368–408 (Mi tvp5351)

Incentive-compatible surveys via posterior probabilities
J. Cvitanic, D. Prelec, S. Radas, H. Sikic

References

1. D. J. Aldous, “Exchangeability and related topics”, École d'été de probabilités de Saint-Flour XIII — 1983, Lecture Notes in Math., 1117, Springer, Berlin, 1985, 1–198  crossref  mathscinet  zmath
2. A. Baillon, “Bayesian markets to elicit private information”, Proc. Natl. Acad. Sci. USA, 114:30 (2017), 7958–7962  crossref  mathscinet  zmath
3. D. Bergemann, S. Morris, “An introduction to robust mechanism design”, Foundations and Trends in Microeconomics, 8:3 (2012), 169–230  crossref
4. J. M. Bernardo, “Expected information as expected utility”, Ann. Statist., 7:3 (1979), 686–690  crossref  mathscinet  zmath
5. T. Börgers, An introduction to the theory of mechanism design, With a chapter by D. Krähmer, R. Strausz, Oxford Univ. Press, New York, 2015, xv+246 pp.  crossref  zmath
6. Yuan Shih Chow, H. Teicher, Probability Theory. Independence, interchangeability, martingales, Springer Texts Statist., 3rd ed., Springer-Verlag, New York, 1997, xxii+488 pp.  crossref  mathscinet  zmath
7. J. Cvitanić, D. Prelec, S. Radas, H. Šikić, “Game of duels: information-theoretic axiomatization of scoring rules”, IEEE Trans. Inform. Theory, 65:1 (2019), 530–537  crossref  mathscinet  zmath
8. J. Cvitanić, D. Prelec, B. Riley, B. Tereick, “Honesty via choice-matching”, AER: Insights, 1:2 (2019), 179–192  crossref
9. A. Dasgupta, A. Ghosh, “Crowdsourced judgement elicitation with endogenous proficiency”, WWW'13: Proceedings of the 22nd ACM international World Wide Web conference (Rio de Janeiro, 2013), ACM, New York, 2013, 319–330  crossref
10. R. Frongillo, J. Witkowski, “A geometric perspective on minimal peer prediction”, ACM Trans. Econ. Comput., 5:3 (2017), 17, 27 pp.  crossref  mathscinet
11. T. Gneiting, A. E. Raftery, “Strictly proper scoring rules, prediction, and estimation”, J. Amer. Statist. Assoc., 102:477 (2007), 359–378  crossref  mathscinet  zmath
12. P. J. Howie, Ying Wang, J. Tsai, “Predicting new product adoption using Bayesian truth serum”, J. Med. Market., 11:1 (2011), 6–16  crossref
13. R. Jurca, B. Faltings, “Robust incentive-compatible feedback payments”, TADA 2006, AMEC 2006: Agent-mediated electronic commerce. Automated negotiation and strategy design for electronic markets (Hakodate, Japan, 2006), Lecture Notes in Comput. Sci., 4452, Lecture Notes in Artificial Intelligence, Springer, Berlin, 2007, 204–218  crossref
14. Yuqing Kong, G. Schoenebeck, “An information theoretic framework for designing information elicitation mechanisms that reward truth-telling”, ACM Trans. Econ. Comput., 7:1 (2019), 2, 33 pp.  crossref  mathscinet
15. A. Kukla-Gryz, J. Tyrowicz, M. Krawczyk, K. Siwiński, “We all do it, but are we willing to admit? Incentivizing digital pirates' confessions”, Appl. Econ. Lett., 22:3 (2015), 184–188  crossref
16. Yang Liu, Juntao Wang, Yiling Chen, Surrogate scoring rules, 2020, arXiv: 1802.09158
17. T. A. Loughran, R. Paternoster, K. J. Thomas, “Incentivizing responses to self-report questions in perceptual deterrence studies: an investigation of the validity of deterrence theory using Bayesian truth serum”, J. Quant. Criminol., 30:4 (2014), 677–707  crossref
18. E. Maskin, T. Sjöström, “Implementation theory”, Handbook of social choice and welfare, v. 1, Handbooks in Econom., 19, Elsevier/North-Holland, Amsterdam, 2002, 237–288  crossref  mathscinet  zmath
19. J. McCarthy, “Measures of the value of information”, Proc. Natl. Acad. Sci. USA, 42:9 (1956), 654–655  crossref  zmath  adsnasa
20. S. R. Miller, B. P. Bailey, A. Kirlik, “Exploring the utility of Bayesian truth serum for assessing design knowledge”, Human–Computer Interaction, 29:5-6 (2014), 487–515  crossref
21. N. Miller, P. Resnick, R. Zeckhauser, “Eliciting informative feedback: the peer-prediction method”, Manag. Sci., 51:9 (2005), 1359–1373  crossref
22. R. B. Myerson, “Optimal auction design”, Math. Oper. Res., 6:1 (1981), 58–73  crossref  mathscinet  zmath
23. T. Offerman, J. Sonnemans, G. Van De Kuilen, P. P. Wakker, “A truth serum for non-Bayesians: correcting proper scoring rules for risk attitudes”, Rev. Econom. Stud., 76:4 (2009), 1461–1489  crossref  mathscinet  zmath
24. D. Prelec, “A Bayesian truth serum for subjective data”, Science, 306:5695 (2004), 462–466  crossref  adsnasa
25. D. Prelec, H. S. Seung, J. McCoy, “A solution to the single-question crowd wisdom problem”, Nature, 541 (2017), 532–535  crossref  adsnasa
26. G. Radanovic, B. Faltings, “A robust Bayesian truth serum for non-binary signals”, AAAI'13: Proceedings of the 27th AAAI conference on artificial intelligence, AAAI Press, 2013, 833–839
27. G. Radanovic, B. Faltings, “Incentives for truthful information elicitation of continuous signals”, AAAI'14: Proceedings of the 28th AAAI conference on artificial intelligence, AAAI Press, 2014, 770–776
28. L. J. Savage, “Elicitation of personal probabilities and expectations”, J. Amer. Statist. Assoc., 66:336 (1971), 783–801  crossref  mathscinet  zmath
29. M. J. Schervish, “A general method for comparing probability assessors”, Ann. Statist., 17:4 (1989), 1856–1879  crossref  mathscinet  zmath
30. K. H. Schlag, J. J. van der Weele, “Eliciting probabilities, means, medians, variances and covariances without assuming risk neutrality”, Theor. Econ. Lett., 3:1 (2013), 38–42  crossref
31. R. V. Vohra, Paths, cycles and mechanism design, Tech. rep., Northwestern Univ., Evanston, IL, 2007, 83 pp.
32. B. Waggoner, Yiling Chen, “Information elicitation sans verification”, Proceedings of the 3rd workshop on social computing and user generated content (SC-13) (Philadelphia, PA, 2013), 2013 http://yiling.seas.harvard.edu/publications/
33. J. Witkowski, Robust peer prediction mechanisms, Ph.D. Diss., Albert-Ludwigs-Universität, Freiburg, 2014, 135 pp. https://freidok.uni-freiburg.de/data/10054
34. J. Witkowski, D. C. Parkes, “A robust Bayesian truth serum for small populations”, AAAI'12: Proceedings of the 26th AAAI conference on artificial intelligence, AAAI Press, 2012, 1492–1498
35. J. Witkowski, D. C. Parkes, “Learning the prior in minimal peer prediction”, Proceedings of the 3rd workshop on social computing and user generated content (SC-13) (Philadelphia, PA, 2013), 2013 http://econcs.seas.harvard.edu/files/econcs/files/witkowski_ec13.pdf
36. P. Zhang, Yiling Chen, “Elicitability and knowledge-free elicitation with peer prediction”, AAMAS'14: Proceedings of the 2014 international conference on autonomous agents and multi-agent systems (Paris, 2014), IFAAMAS, Richland, SC, 2014, 245–252 http://yiling.seas.harvard.edu/publications/


© Steklov Math. Inst. of RAS, 2024