|
|
|
Список литературы
|
|
|
1. |
Акопян А.В., Кабатянский Г.А., Мусин О.Р., “Контактные числа, коды и сферические многочлены”, Математическое просвещение. Сер. 3, 16, 2012, 57–74 |
2. |
Башуров В.В., “Применение методов геометрической оптики к решению задач безопасности объекта”, Вычислительные технологии, 11:4 (2006), 23–28 |
3. |
Березовский О.А., “О задаче упаковки шаров в куб”, Кибернетика и системный анализ, 50:4 (2014), 170–179 |
4. |
Казаков А.Л., Лебедев П.Д., “Алгоритмы построения оптимальных упаковок для компактных множеств на плоскости”, Вычислительные методы и программирование, 16:2 (2015), 307–317 |
5. |
Казаков А.Л., Лемперт А.А., “Об одном подходе к решению задач оптимизации, возникающих в транспортной логистике”, Автоматика и телемеханика, 2011, № 7, 50–57 |
6. |
Казаков А.Л., Лемперт А.А., Ле К.М., “О задачах построения многократных покрытий и упаковок в двумерном неевклидовом пространстве”, Управление большими системами, 81 (2019), 6–25 |
7. |
Казаков А.Л., Лемперт А.А., Нгуен Г.Л., “Об одном алгоритме построения упаковки конгруэнтных кругов в неодносвязное множество с неевклидовой метрикой”, Вычислительные методы и программирование: новые вычислительные технологии, 17:2 (2016), 177–188 |
8. |
Лебедев П.Д., Лавров Н.Г., “Алгоритмы построения оптимальных упаковок шаров в эллипсоиды”, Известия Института математики и информатики Удмуртского государственного университета, 52 (2018), 59–74 |
9. |
Слоэн Н.Дж.А., “Упаковка шаров”, В мире науки, 1984, № 3, 72–82 |
10. |
Тот Л.Ф., Расположения на плоскости, на сфере и в пространстве, Физматлит, М., 1958, 364 с. |
11. |
Хлуд О.М., Суббота И.А., Романова Т.Е., “Математическая модель и метод решения задачи упаковки гомотетических одинаково ориентированных эллипсоидов”, Радиоэлектроника и информатика, 2015, № 3, 26–32 |
12. |
Яськов Г.Н., “Упаковка большого числа конгруэнтных шаров в цилиндре”, Докл. НАН Украины, 2009, № 12, 45–48 |
13. |
Akeb H., “A Two-Stage Look-Ahead Heuristic for Packing Spheres into a Three-Dimensional Bin of Minimum Length”, Recent Advances in Computational Optimization, Results of the Workshop on Computational Optimization WCO 2014, 2016, 127–144 |
14. |
Alkhandari A., “3D packing of balls in different containers by VNS”, School of Information Systems, Computing and Mathematics (Brunel University, 2013) https://bura.brunel.ac.uk/handle/2438/8052 |
15. |
Birgin E.G., Csendes T., “New and improved results for packing identical unitary radius circles within triangles, rectangles and strips”, Computers and Operations Research, 37:7 (2010), 1318–1327 |
16. |
Chernov N., Stoyan Yu., Romanova T., “Mathematical model and efficient algorithms for object packing problem”, Computational Geometry, 43:5 (2010), 535–553 |
17. |
Gensane T., “Dense packing of equal spheres in a cube”, The Electronic Journal of Combinatorics, 11 (2004), 1–17 |
18. |
Graham R.L., Lubachevsky B.D., Nurmela K.J., Ostergard P.R.J., “Dense packings of congruent circles in a circle”, Discrete Mathematics, 181 (1998), 139–154 |
19. |
Grosso A., Jamali A.R., Locatelli M., Schoen F., “Solving the problem of packing equal and unequal circles in a circular container”, Journal of Global Optimization, 47:1 (2010), 63–81 |
20. |
Hales T.C., “Cannonballs and honeycombs”, Notices of the American Mathematical Society, 47 (2000), 440–449 |
21. |
Harrary F., Randolph W., Mezey P.G., “A study of maximum unit-circle caterpillars-tools for the study of the shape of adsorption patterns”, Discrete Applied Mathematics, 67:1-3 (1996), 127–135 |
22. |
Huang W., Yu L., Serial symmetrical relocation algorithm for the equal sphere packing problem, 2012, arXiv: abs/1202.4149 |
23. |
Kazakov A.L., Lempert A.A., Ta T.T., “The sphere packing problem into bounded containers in threedimension non-Euclidean space”, IFAC-PapersOnLine, 51:32 (2018), 782–787 |
24. |
Kazakov A.L., Lempert A.A., Ta T.T., “On the algorithm for equal balls packing into a multiconnected set”, Advances in Intelligent Systems Research, 169 (2019), 216–222 |
25. |
Khlud O.M., Yaskov G.N., “Packing homothetic spheroids into a larger spheroid with the jump algorithm”, Control, navigation and communication systems, 6:46 (2017), 131–135 |
26. |
Lempert A.A., Kazakov A.L., “On Mathematical Models for Optimization Problem of Logistics Infrastructure”, Int. J. Artificial Intelligence, 13:1 (2015), 200–210 |
27. |
Lopez C.O., Beasley J.E., “A Heuristic for the Circle Packing Problem with a Variety of Containers”, European Journal of Operation Research, 214:3 (2001), 512–525 |
28. |
Markot M.C., Csendes T.A., “A new verified optimization technique for the «packing circles in a unit square» problems”, SIAM Journal on Optimization, 16 (2005), 193–219 |
29. |
Nurmela K.J., Ostergard P.R.J., “Packing up to 50 equal circles in a square”, Discrete and Computational Geometry, 18 (1997), 111–120 |
30. |
Pfoertner H., Densest packings of n equal spheres in a sphere of radius 1, http://www.randomwalk.de/sphere/insphr/spisbest.txt, 2008 (дата обращения: 03.12.2019) |
31. |
Specht E., Packomania, http://www.packomania.com (дата обращения: 13.03.2020) |
32. |
Stoyan Y.G., Yaskov G., “Packing identical spheres into a rectangular parallelepiped”, Intelligent Decision Support, eds. Bortfeldt A., Homberg-er J., Kopfer H., Pankratz G., Strangmeier R., Gabler, 2008, 47–67 |
33. |
Stoyan Y.G., Yaskov G., “Packing identical spheres into a cylinder”, International Transactions in Operational Research, 17 (2009), 51–70 |
34. |
Sutou A., Dai Y., “Global Optimization Approach to Unequal Global Optimization Approach to Unequal Sphere Packing Problems in 3D”, Journal of Optimization Theory and Applications, 114:3 (2002), 671–694 |
35. |
Tatarevic M., “On Limits of Dense Packing of Equal Spheres in a Cube”, The Electronic Journal of Combinatorics, 22:1 (2015), 35 |
36. |
Wang J., “Packing of unequal spheres and automated radiosurgical treatment planning”, Journal of Combinatorial Optimization, 3 (1999), 453–463 |