|
|
|
References
|
|
|
1. |
Bogomolov A. V., “Ispolzovanie lingvisticheskikh peremennykh i metodov obrabotki ekspertnoi informatsii dlya avtomatizirovannogo raspoznavaniya rannikh stadii narusheniya funktsionalnogo sostoyaniya cheloveka”, Informatsionnye tekhnologii, 2000, no. 8, 12–18 |
2. |
Borisov V. V., Kruglov V. V., Fedulov A. S., Nechëtkie modeli i seti, Goryachaya liniya-Telekom, M., 2007, 284 pp. |
3. |
Golosovskii M. S., “Primenenie sistemy na osnove nechëtkoi logiki v zadachakh upravleniya proektami po razrabotke programmnogo obespecheniya”, Materialy Kh mezhdunarodnoi nauchnoi konferentsii «Innovatsionnoe razvitie obschestva: usloviya, protivorechiya, prioritety», ed. A.V. Semenov, 2014, 400–404 |
4. |
Zade L., Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii, Mir, M., 1976, 167 pp. |
5. |
Kruglov V. V., “Sravnenie algoritmov Mamdani i Sugeno v zadache approksimatsii funktsii”, Matematicheskaya morfologiya: elektronnyi matematicheskii i mediko-biologicheskii zhurnal, 2001, no. 4, 69–76 |
6. |
Kudinov Yu. I., Kelina A. Yu., “Metody sinteza i nastroiki nechetkikh PID regulyatorov Mamdani”, Informatsionnye tekhnologii, 2012, no. 6, prilozhenie, 32 pp. |
7. |
Paklin N. B., Adaptivnye modeli nechetkogo vyvoda dlya identifikatsii nelineinykh zavisimostei v slozhnykh sistemakh, Avtoref. dis. kand. tekhn. nauk, Izhevsk, 2004, 20 pp. |
8. |
Pegat A., Nechëtkoe modelirovanie i upravlenie, 2-e izdanie, BINOM. Laboratoriya znanii, M., 2013, 798 pp. |
9. |
Silich V. A., Silich M. P., Aksenov S. V., “Algoritm postroeniya nechetkoi sistemy logicheskogo vyvoda Mamdani, osnovannyi na analize plotnosti obuchayuschikh primerov”, Doklady TUSUR, 2013, no. 3(29), 76–82 |
10. |
Shtovba S. D., Mazurenko V. V., Tylets R. O., “Infor-matsionnaya tekhnologiya nechetkoi identifikatsii dlya sinteza tochnykh, kompaktnykh i interpretabelnykh baz znanii”, Computer Sciences and Telecommunications, 2016, no. 1(47), 8–22 |
11. |
Gacto M., Alcala R., Herrera F., “Interpretability of lin-guistic fuzzy rule - based systems: An overview of interpretability measures”, Information Sciences, 181:20 (2011), 4340–4360 |
12. |
Gang F., Analysis and synthesis of fuzzy control systems: a model-based approach, Automation and control engineering, CRC Press, 2017, 299 pp. |
13. |
Kosko B., “Fuzzy systems as universal aproximators”, IEEE Transactions on Computers, 43:11 (1994), 1329–1333 |
14. |
Kosko B., “Global stability of generalized additive fuzzy systems”, IEEE Transactions on Systems, Man, and Cybernetics. Part C: Applications and Reviews, 28:3 (1998), 441–452 |
15. |
Maistrou A. I., Bogomolov A. V., “Technology of auto-mated medical diagnostics using fuzzy linguistic variables and consensus ranking methods”, IFMBE Proc. of the World Congress on Medical Physics and Biomedical Engineering: Diagnostic and Therapeutic Instrumentation, Clinical Engineering. Cycle: “World Congress on Medical Physics and Biomedical Engineering: Diagnostic and Therapeutic Instrumentation, Clinical Engineering” (Munich, 2009), 38–41 |
16. |
Manentia F., Rossia F., Goryunov A., Dyadik A., Kozin K., Nadezhdin I., Mikhalevich S., “Fuzzy adaptive control system of a non-stationary plant with closed-loop passive identifier”, Resource-Efficient Technologies, 1:1 (2015), 10–18 |
17. |
Miller G. A., “The magical number seven plus or minus two: some limits on our capacity for processing information”, The Psychological Review, 1956, no. 63, 81–97 |