RUS  ENG
Full version
JOURNALS // Ufimskii Matematicheskii Zhurnal

Ufimsk. Mat. Zh., 2024, Volume 16, Issue 1, Pages 99–110 (Mi ufa686)

Homogenization of motion equations for medium consisting of elastic material and incompessible Kelvin-Voigt fluid
A. S. Shamaev, V. V. Shumilova

References

1. J. Sanchez-Hubert, “Asymptotic study of the macroscopic behavior of a solid-fluid mixture”, Math. Methods Appl. Sci., 2:1 (1980), 1–18  crossref  mathscinet
2. E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Springer-Verlag, Berlin, 1980  mathscinet  mathscinet  zmath
3. R.P. Gilbert, A. Mikelić., “Homogenizing the acoustic properties of the seabed: Part I”, Nonlinear Analysis, 40:1 (2000), 185–212  crossref  mathscinet  zmath
4. Th. Clopeau, J.L. Ferrin , R.P. Gilbert, A. Mikelić., “Homogenizing the acoustic properties of the seabed, Part II”, Math. and Comput. Modelling, 33:8-9 (2003), 821–841  crossref  mathscinet
5. A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289  crossref  mathscinet  zmath
6. V.V. Shumilova, “Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a fluid”, J. Math. Sci., 190:1 (2013), 194–208  mathnet  crossref  mathscinet  zmath
7. A.S. Shamaev, V.V. Shumilova, “Averaging the acoustics equations for a viscoelastic material with channels filled with a viscous compressible fluid”, Fluid Dyn., 46:2 (2011), 250–261  crossref  mathscinet  zmath
8. A.S. Shamaev, V.V. Shumilova, “Homogenization of the acoustic equations for a porous long-memory viscoelastic material filled with a viscous fluid”, Differ. Equ., 48:8 (2012), 1161–1173  crossref  mathscinet  mathscinet  zmath
9. S.A. Sazhenkov, E.V. Sazhenkova, A.V. Zubkova, “Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior”, Sib. Èlektron. Mat. Izv., 11 (2014), 26–51  mathnet  mathscinet  zmath
10. A.P. Oskolkov, “Initial-boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids”, Proc. Steklov Inst. Math., 179 (1989), 137–182  mathnet  mathscinet  zmath
11. V.G. Zvyagin, M.V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin-Voigt fluids”, J. Math. Sci., 168:2 (2010), 157–308  mathnet  crossref  mathscinet  zmath
12. J.-L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, v. I, Springer-Verlag, Berlin, 1972  mathscinet
13. G.A. Chechkin, A.L. Piatnitski, A.S. Shamaev, Homogenization. Methods and applications, Amer. Math. Soc., Providence, RI, 2007  mathscinet  zmath
14. R. Dautray, J.-L. Lions, Mathematical analysis and numerical methods for science and technology, v. 5, Evolution Problems I, Springer, Berlin–Heidelberg–New York, 2000, 739 pp.  mathscinet
15. V.V. Shumilova, “Homogenization of the system of acoustic equations for layered viscoelastic media”, J. Math. Sci., 261:3 (2022), 488–501  crossref  mathscinet  zmath
16. V.V. Shumilova, “Effective tensor of the relaxation kernels of a layered medium consisting of a viscoelastic material and a viscous incompressible fluid”, Fluid Dyn., 58:2 (2023), 189–197  crossref  mathscinet  zmath
17. A.S. Shamaev, V.V. Shumilova, “Spectrum of one-dimensional oscillations in the combined stratified medium consisting of a viscoelasticmaterial and a viscous compressible fluid”, Fluid Dyn., 48:1 (2013), 14–22  crossref  mathscinet  zmath
18. A.S. Shamaev, V.V. Shumilova, “Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin-Voigt viscoelastic materials”, Proc. Steklov Inst. Math., 295 (2016), 202–212  mathnet  crossref  crossref  mathscinet  zmath
19. V.V. Shumilova, “Spectrum of natural vibrations of a layered medium consisting of a Kelvin-Voigt material and a viscous incompressible fluid”, Sib. Èlektron. Mat. Izv., 17 (2020), 21–31  mathnet  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025