RUS  ENG
Full version
JOURNALS // Ural Mathematical Journal

Ural Math. J., 2021, Volume 7, Issue 1, Pages 26–37 (Mi umj135)

On the potentiality of a class of operators relative to local bilinear forms
Svetlana A. Budochkina, Ekaterina S. Dekhanova

References

1. Berkovich L. M., “The generalized Emden-Fowler equation”, Symmetry in Nonlinear Mathematical Physics, 1 (1997), 155–163  mathscinet  zmath
2. Budochkina S. A., Savchin V. M., “On direct variational formulations for second order evolutionary equations”, Eurasian Math. J., 3:4 (2012), 23–34  mathnet  mathscinet  zmath  elib
3. Budotchkina S. A., Savchin V. M., “On indirect variational formulations for operator equations”, J. Funct. Spaces Appl., 5:3 (2007), 231–242  crossref  mathscinet  elib
4. Filippov V. M., Variatsionnye printsipy dlya nepotentsial'nykh operatorov [Variational Principles for Nonpotential Operators], PFU, Moscow, 1985, 206 pp. (in Russian)  mathscinet
5. Filippov V. M., Savchin V. M., Budochkina S. A., “On the existence of variational principles for differential-difference evolution equations”, Proc. Steklov Inst. Math., 283 (2013), 20–34  mathnet  crossref  mathscinet  zmath
6. Filippov V. M., Savchin V. M., Shorokhov S. G., “Variational principles for nonpotential operators”, J. Math. Sci., 68:3 (1994), 275–398  crossref  mathscinet
7. Galiullin A. S., Obratnye zadachi dinamiki [Inverse Problems of Dynamics], Nauka, Moscow, 1981, 144 pp. (in Russian)  mathscinet  zmath
8. Galiullin A. S., Gafarov G. G., Malayshka R. P., Khvan A. M., Analiticheskaya dinamika sistem Gel'mgol'tsa, Birkgofa, Nambu [Analytical dynamics of Helmholtz, Birkhoff, Nambu systems], Advances in Physical Sciences, Moscow, 1997, 324 pp. (in Russian)
9. Popov A. M., “Potentiality conditions for differential-difference equations”, Differ. Equ., 34:3 (1998), 423–426  mathnet  mathscinet  zmath
10. Popov A. M., “Inverse problem of the calculus of variations for systems of differential-difference equations of second order”, Math. Notes, 72:5 (2002), 687—691  mathnet  crossref  mathscinet  zmath
11. Santilli R. M., Foundations of Theoretical Mechanics, I: The Inverse Problems in Newtonian Mechanics, Springer–Verlag, Berlin—Heidelberg, 1977, 266 pp.  mathscinet
12. Santilli R. M., Foundations of Theoretical Mechanics, II: Birkhoffian Generalization of Hamiltonian Mechanics., Springer–Verlag, Berlin-Heidelberg, 1983, 370 pp.  crossref  mathscinet  zmath
13. Savchin V. M., Matematicheskie metody mekhaniki beskonechnomernykh nepotentsial'nykh sistem [Mathematical Methods of Mechanics of Infinite-Dimensional Nonpotential Systems], PFU, Moscow, 1991, 237 pp. (in Russian)  mathscinet
14. Savchin V. M., “An operator approach to Birkhoff's equations”, Vestnik RUDN. Ser. Math., 1995, no. 2 (2), 111–123  zmath
15. Savchin V. M., Budochkina S. A., “On the structure of a variational equation of evolution type with the second t-derivative”, Differ. Equ., 39:1 (2003), 127–134  mathnet  crossref  mathscinet  zmath
16. Tleubergenov M. I., Ibraeva G. T., “On the solvability of the main inverse problem for stochastic differential systems”, Ukrainian Math. J., 71:1 (2019), 157—165  crossref  mathscinet  zmath
17. Tleubergenov M. I., Ibraeva G. T., “On inverse problem of closure of differential systems with degenerate diffusion”, Eurasian Math. J., 10:2 (2019), 93–102  mathnet  crossref  mathscinet  zmath
18. Tonti E., “On the variational formulation for linear initial value problems”, Ann. Mat. Pura Appl. (4), 95 (1973), 331—359  crossref  mathscinet  zmath
19. Tonti E., “Variational formulation for every nonlinear problem”, Internat. J. Engrg. Sci., 22:11–12 (1984), 1343—1371  crossref  mathscinet  zmath
20. Tonti E., “Extended variational formulation”, Vestnik RUDN. Ser. Math., 1995, no. 2 (2), 148–162  zmath
21. Tunitsky D. V., “On the inverse variational problem for one class of quasilinear equations”, J. Geom. Phys., 148 (2020), 103568  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025