RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Ural Mathematical Journal

Ural Math. J., 2023, òîì 9, âûïóñê 2, ñòðàíèöû 60–76 (Mi umj204)

Heterogeneous server retrial queueing model with feedback and working vacation using artificial bee colony optimization algorithm
Kothandaraman Divya, Kandaiyan Indhira

References

1. Agarwal N. N., Some Problems in the Theory of Reliability and Queues, Ph.D. Thesis., Kurukshetra University, Kurukshetra, India, 1965
2. Ahuja A., Jain A., Jain M., “Transient analysis and ANFIS computing of unreliable single server queueing model with multiple stage service and functioning vacation”, Math. Comput. Simulation, 192 (2022), 464–490  crossref  mathscinet
3. Bouchentouf A. A., Kadi M., Rabhi A., “Analysis of two heterogeneous server queueing model with balking, reneging and feedback”, Math. Sci. Appl E-Notes, 2:2 (2014), 10–21  crossref  zmath
4. Chakravarthy S. R., “Analysis of a queueing model with MAP arrivals and heterogeneous phase-type group services”, Mathematics, 10:19 (2022), 3575  crossref
5. Divya K., Indhira K., “Analysis of a heterogeneous queuing model with intermittently obtainable servers under a hybrid vacation schedule”, Symmetry, 15:7 (2023), 1304  crossref
6. Divya K., Indhira K., “Performance analysis and ANFIS computing of an unreliable Markovian feedback queuing model under a hybrid vacation policy”, Math. Comput. Simulation, 218 (2024), 403–419  crossref  mathscinet
7. Jain M., Jain A., “Working vacations queueing model with multiple types of server breakdowns”, Appl. Math. Model., 34:1 (2010), 1–13  crossref  mathscinet  zmath
8. Neuts M. F., “Matrix-Geometric solutions in stochastic models”, DGOR. Operations Research Proceedings, v. 1983, eds. Steckhan H. and al., Springer, Berlin, Heidelberg, 1984, 425 pp.  crossref
9. Krishnamoorthy A., Sreenivasan C., “An $M/M/2$ queueing system with heterogeneous servers including one with working vacation”, Int. J. Stoch. Anal., 2012 (2012), 145867  crossref  zmath
10. Kumar A., Jain M., “Cost optimization of an unreliable server queue with two stage service process under hybrid vacation policy”, Math. Comput. Simulation, 204 (2023), 259–281  crossref  mathscinet
11. Kumar R., Sharma S. K., “Two heterogeneous server Markovian queueing model with discouraged arrivals, reneging and retention of reneged customers”, Int. J. Oper. Res., 11:2 (2014), 64–68  mathscinet
12. Leemans H. E., The Two-Class Two-Server Queueing Model with Nonpreemptive Heterogeneous Priority Structures, Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, 1998
13. Servi L. D., Finn S. G., “$M/M/1$ queues with working vacations $(M/M/1/WV)$”, Perform. Eval., 50:1 (2002), 41–52  crossref
14. Morse P. M., Queues, Inventories and Maintenance: The Analysis of Operational Systems with Variable Demand and Supply, Courier Corporation, Mineola, New York, 2004, 202 pp.
15. Latouche G., Ramaswami V., Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM Series Stat. Appl. Math., SIAM, Philadelphia, Pennsylvania; ASA, Alexandria, Virginia, 1999, 334 pp.  crossref  zmath
16. Seenivasan M., Senthilkumar R., Subasri K. S., “$M/M/2$ heterogeneous queueing system having unreliable server with catastrophes and restoration”, Mater. Today: Proc., 51:8 (2022), 2332–2338  crossref
17. Sethi R., Jain M., Meena R. K., Garg D., “Cost optimization and ANFIS computing of an unreliable $M/M/1$ queueing system with customers' impatience under $N$-policy”, Int. J. Appl. Comput. Math., 6 (2020), 51, 1–14  crossref
18. Sanga S. S., Jain M., “Cost optimization and ANFIS computing for admission control of $M/M/1/K$ queue with general retrial times and discouragement”, Appl. Math. Comput., 363 (2019), 124624  crossref  mathscinet  zmath
19. Sharda., “A queuing problem with intermittently available server and arrivals and departures in batches of variable size”, ZAMM, 48 (1968), 471–476  crossref  mathscinet  zmath
20. Stojčić M., Pamučar D., Mahmutagić E., Stević Ž., “Development of an ANFIS Model for the Optimization of a Queuing System in Warehouses”, Information, 9:10 (2018), 240, 1–20  crossref
21. Sudhesh R., Azhagappan A., Dharmaraja S., “Transient analysis of $M/M/1$ queue with working vacation, heterogeneous service and customers' impatience”, RAIRO-Oper. Res., 51:3 (2017), 591–606  crossref  mathscinet  zmath
22. Thakur S., Jain A., Jain M., “ANFIS and cost optimization for Markovian queue with operational vacation”, Int. J. Math. Eng. Management Sci., 6:3 (2021), 894–910  crossref
23. Vijaya Laxmi P., Jyothsna K., “Balking and reneging multiple working vacations queue with heterogeneous servers”, J. Math. Model. Algor., 14 (2015), 267–285  crossref  zmath
24. Wu C.-H., Yang D.-Y., “Bi-objective optimization of a queueing model with two-phase heterogeneous service”, Comput. Oper. Res., 130 (2021), 105230  crossref  zmath
25. Yohapriyadharsini R. S., Suvitha V., “Multi-server Markovian heterogeneous arrivals queue with two kinds of working vacations and impatient customers”, Yugosl. J. Oper. Res., 33:4 (2023), 643–666  crossref  mathscinet
26. Zadeh L. A., “The concept of a linguistic variable and its application to approximate reasoning–I”, Inform. Sci., 8:3 (1975), 199–249  crossref  zmath


© ÌÈÀÍ, 2024