|
|
|
Литература
|
|
|
1. |
Bellman R. E., Dynamic Programming, Princeton Univ. Press, Princeton, 1957, 339 pp. |
2. |
Donoho D. L., “High-dimensional data analysis: The curses and blessings of dimensionality”, Proc. AMS Conf. on Math Challenges of 21st Century, 2000, 1–33 |
3. |
Seung H. S., Lee D. D., “Cognition. The manifold ways of perception”, Science, 290:5500 (2000), 2268–2269 |
4. |
Huo X., Ni X. S., Smith A. K., “A survey of manifold-based learning methods”, Recent Advances in Data Mining of Enterprise Data, eds. Liao T. W., Triantaphyllou E., World Sci., Singapore, 2007, 691–745 |
5. |
Ma Y., Fu Y., Manifold Learning Theory and Applications, CRC Press, London, 2011, 314 pp. |
6. |
Tenenbaum J. B., de Silva V., Langford J., “A global geometric framework for nonlinear dimensionality reduction”, Science, 290:5500 (2000), 2319–2323 |
7. |
Roweis S. T., Saul L. K., “Nonlinear dimensionality reduction by locally linear embedding”, Science, 290, no. 5500 (2000), 2323–2326 |
8. |
Zhang Z., Zha H., “Principal manifolds and nonlinear dimension reduction via local tangent space alignment”, SIAM J. Sci. Comput., 26:1 (2004), 313–338 |
9. |
Belkin M., Niyogi P., “Laplacian eigenmaps for dimensionality reduction and data representation”, J. Neural Comput., 15:6 (2003), 1373–1396 |
10. |
Belkin M., Niyogi P., “Convergence of Laplacian eigenmaps”, Adv. Neural Inf. Process. Syst., 19 (2007), 129–136 |
11. |
Donoho D. L., Grimes C., “Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data”, Proc. Natl. Acad. Sci. U. S. A., 100:10, 5591–5596 |
12. |
Bernstein A., Kuleshov A. P., “Manifold learning: Generalizing ability and tangent proximity”, Int. J. Software Inf., 7:3 (2013), 359–390 |
13. |
Bernstein A., Kuleshov A., Yanovich Y., “Manifold learning in regression tasks”, Statistical Learning and Data Sciences. SLDS 2015, Lecture Notes in Computer Science, 9047, eds. Gammerman A., Vovk V., Papadopoulos H., Springer, Cham, 2015, 414–423 |
14. |
Pelletier B., “Non-parametric regression estimation on closed Riemannian”, J. Nonparametric Stat., 18:1 (2006), 57–67 |
15. |
Niyogi P., Smale S., Weinberger S., “Finding the homology of submanifolds with high confidence from random samples”, Discrete Comput. Geom., 39:1 (2008), 419–441 |
16. |
Bernstein A. V., Kuleshov A. P., Yanovich Yu. A., “Locally isometric and conformal parameterization of image manifold”, Proc. 8th Int. Conf. on Machine Vision (ICMV 2015), Proc. SPIE, 9875, 2015, 987507, 7 pp. |
17. |
Kachan O., Yanovich Y., Abramov E., “Vector fields alignment on manifolds via contraction mappings”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:2 (2018), 300–308 |
18. |
Yanovich Yu., “Asymptotic properties of local sampling on manifold”, J. Math. Stat., 12:3 (2016), 157–175 |
19. |
Absil P. A., Mahony R., Sepulchre R., Optimization Algorithms on Matrix Manifolds, Princeton Univ. Press, Princeton, 2007, 240 pp. |
20. |
Boumal N., Mishra B., Absil P.-A., Sepulchre R., “Manopt, a Matlab toolbox for optimization on manifolds”, J. Mach. Learn. Res., 15:1 (2014), 1455–1459 |