|
|
|
Литература
|
|
|
1. |
Mallick S., Gayen D., “Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – a critical review”, J. Energy Storage, 62 (2023), 106894 |
2. |
Fu H., Wang J., Li L., Gong J., Wang X., “Numerical study of mini-channel liquid cooling for suppressing thermal runaway propagation in a lithium-ion battery pack”, Appl. Therm. Eng., 234 (2023), 121349 |
3. |
Drewry H.P.G., Seaton N.A., “Continuum random walk simulations of diffusion and reaction in catalyst particles”, AIChE J., 41:4 (1995), 880–893 |
4. |
Feres R., Yablonsky G.S., Mueller A., Baernstein A., Zheng X., Gleaves J.T., “Probabilistic analysis of transport-reaction processes over catalytic particles: Theory and experimental testing”, Chem. Eng. Sci., 64:3 (2009), 568–581 |
5. |
Zielinski J.M., Petersen E.E., “Monte Carlo simulation of diffusion and chemical reaction in catalyst pores”, AIChE J., 33:12 (1987), 1993–1997 |
6. |
Garmory A., Richardson E.S., Mastorakos E., “Micromixing effects in a reacting plume by the Stochastic Fields method”, Atmos. Environ, 40:6 (2006), 1078–1091 |
7. |
Ghoniem A.F., Oppenheim A.K., “Numerical solution for the problem of flame propagation by the random element method”, AIAA J., 22:10 (1984), 1429–1435 |
8. |
Бетев А.С., Киверин А.Д., Медведев С.П., Яковенко И.С., “Численное моделирование режимов турбулентного горения водорода вблизи бедного предела”, Хим. физ., 39:12 (2020), 17–23 ; Betev A.S., Kiverin A.D., Medvedev S.P., Yakovenko I.S., “Numerical simulation of turbulent hydrogen combustion regimes near the lean limit”, Russ. J. Phys. Chem., 14:6 (2020), 940–945 |
9. |
Tunér M., Stochastic reactor models for engine simulations, Doctoral Thesis, Lund Univ., Lund, 2008, 194 pp. |
10. |
Keil F.J., “Diffusion and reaction in porous networks”, Catal. Today, 53:2 (1999), 245–258 |
11. |
Zhdanov V.P., Kasemo B., “Simulations of the reaction kinetics on nanometer supported catalyst particles”, Surf. Sci. Rep., 39:2–4 (2000), 25–104 |
12. |
Kerstein A.R., Edwards B.F., “Percolation model for simulation of char oxidation and fragmentation time-histories”, Chem. Eng. Sci., 42:7 (1987), 1629–1634 |
13. |
Гринчук П.С., “Горение гетерогенных систем со стохастической пространственной структурой вблизи пределов распространения”, ИФЖ, 86:4 (2013), 819–831; Grinchuk P.S., “Combustion of heterogeneous systems with a stochastic spatial structure near the propagation limits”, J. Eng. Phys. Thermophys., 86:4 (2013), 875–887 |
14. |
Xin H., Wang C., Louw E., Wang D., Mathews J.P., “Atomistic simulation of coal char isothermal oxy-fuel combustion: Char reactivity and behavior”, Fuel, 182 (2016), 935–943 |
15. |
Panga M.K.R., Ziauddin M., Balakotaiah V., “Two-scale continuum model for simulation of wormholes in carbonate acidization”, AIChE J., 51:12 (2005), 3231–3248 |
16. |
Baras F., Nicolis G., Mansour M.M., Turner J.W., “Stochastic theory of adiabatic explosion”, J. Stat. Phys., 32:1 (1983), 1–23 |
17. |
de Pasquale F., Mecozzi A., “Theory of chemical fluctuations in thermal explosions”, Phys. Rev. A, 31:4 (1985), 2454 |
18. |
Fernandez A., “Theory of scaling for fluctuations in thermal explosion conditions”, Ber. Bunsenges. Phys. Chem., 91:2 (1987), 159–163 |
19. |
Frankowicz M., Nicolis G., “Transient evolution towards a unique stable state: Stochastic analysis of explosive behavior in a chemical system”, J. Stat. Phys., 3:3 (1983), 595–609 |
20. |
Frankowicz M., Mansour M.M., Nicolis G., “Stochastic analysis of explosive behaviour: A qualitative approach”, Physica, 125:1 (1984), 237–246 |
21. |
van Kampen N.G., “Intrinsic fluctuations in explosive reactions”, J. Stat. Phys., 46:5 (1987), 933–948 |
22. |
Vlad M.O., Ross J., “A stochastic approach to nonequilibrium chain reactions in disordered systems: Breakdown of eikonal approximation”, Int. J. Thermophys., 18:4 (1997), 957–975 |
23. |
Gorecki J., Popielawski J., “On the stochastic theory of adiabatic thermal explosion in small systems - numerical results”, J. Stat. Phys., 44:5 (1986), 941–954 |
24. |
Zheng Q., Ross J., “Comparison of deterministic and stochastic kinetics for nonlinear systems”, J. Chem. Phys., 94:5 (1991), 3644–3648 |
25. |
Chou D.-P., Lackner T., Yip S., “Fluctuation effects in models of adiabatic explosion”, J. Stat. Phys., 69:1 (1992), 193–215 |
26. |
Nowakowski B., Lemarchand A., “Thermal explosion near bifurcation: Stochastic features of ignition”, Phys. A, 311:1–2 (2002), 80–96 |
27. |
Lemarchand A., Nowakowski B., “Fluctuation-induced and nonequilibrium-induced bifurcations in a thermochemical system”, Mol. Simul., 30:11–12 (2004), 773–780 |
28. |
Буевич Ю.А., Федотов С.П., “Формирование режимов гетерогенной реакции под воздействием мультипликативного шума”, ИФЖ, 53:5 (1987), 802–807; Buevich Yu.A., Fedotov S.P., “Formation of heterogeneous reaction regimes under the action of multiplicative noise”, J. Eng. Phys., 53:5 (1987), 1302–1306 |
29. |
Wei J., “Irreversible thermodynamics in engineering”, Ind. Eng. Chem., 58:10 (1966), 55–60 |
30. |
van der Broeck C., Parrondo J.M.R., Toral R., Kawai R., “Nonequilibrium phase transitions induced by multiplicative noise”, Phys. Rev. E, 55:4 (1997), 4084 |
31. |
Bedeaux D., Pagonabarraga I., Ortiz de Zárate J.M., Sengers J.V., Kjelstrup S., “Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion”, Phys. Chem. Chem. Phys., 12 (2010), 12780–12793 |
32. |
Bochkov G.N., Orlov A.L., Kolpashchikov V.L., “Fluctuation-dissipation models of mass transfer in systems with chemical reactions”, Int. Commun. Heat Mass Transfer, 12:1 (1985), 33–43 |
33. |
Schmiedl T., Seifert U., “Stochastic thermodynamics of chemical reaction networks”, J. Chem. Phys., 126 (2007), 044101 |
34. |
Ge H., Qian H., “Mathematical formalism of nonequilibrium thermodynamics for nonlinear chemical reaction systems with general rate law”, J. Stat. Phys., 166:1 (2017), 190–209 |
35. |
Darvey I.G., Staff P.J., “Stochastic approach to first-order chemical reaction kinetics”, J. Chem. Phys., 44 (1966), 990–997 |
36. |
van Kampen N.G., “The equilibrium distribution of a chemical mixture”, Phys. Lett. A, 59:5 (1976), 333–334 |
37. |
Gillespie D.T., “Stochastic simulation of chemical kinetics”, Annu. Rev. Phys. Chem., 58 (2007), 35–55 |
38. |
Higham D.J., “Modeling and simulating chemical reactions”, SIAM Rev., 50:2 (2008), 347–368 |
39. |
Sandu A., “A new look at the chemical master equation”, Numer. Algorithms, 65:3 (2014), 485–498 |
40. |
Schlögl F., “Stochastic measures in nonequilibrium thermodynamics”, Phys. Rep., 62:4 (1980), 267–380 |
41. |
Montefusco A., Peletier M.A., Öttinger H.C., “A framework of nonequilibrium statistical mechanics. II. Coarse-graining”, J. Non-Equilib. Thermodyn., 46:1 (2021), 15–33 |
42. |
Fernández A., Rabitz H., “The scaling of nonequilibrium fluctuations in gaseous thermal explosions”, Ber. Bunsenges. Phys. Chem., 92:6 (1988), 754–760 |
43. |
Baer M.R., Gartling D.K., Desjardin P.E., “Probabilistic models for reactive behaviour in heterogeneous condensed phase media”, Combust. Theory Modell., 16:1 (2012), 75–106 |
44. |
Fedotov S.P., “Stochastic analysis of the thermal ignition of a distributed explosive system”, Phys. Lett. A, 176:3–4 (1993), 220–224 |
45. |
Baratti R., Tronci S., Schaum A., Alvarez J., “Dynamics of nonlinear chemical process with multiplicative stochastic noise”, IFAC-PapersOnLine, 49:7 (2016), 869–874 |
46. |
Schaum A., Tronci S., Baratti R., Alvarez J., “On the dynamics and robustness of the chemostat with multiplicative noise”, IFAC-PapersOnLine, 54:3 (2021), 342–347 |
47. |
Leicher J., Wirtz S., Scherer V., “Evaluation of an entropy-based combustion model using stochastic reactors”, Chem. Eng. Technol., 31:7 (2008), 964–970 |
48. |
Rao N.J., Ramkrishna D., Borwanker J.D., “Nonlinear stochastic simulation of stirred tank reactors”, Chem. Eng. Sci., 29:5 (1974), 1193–1204 |
49. |
Alvarez J., Baratti R., “On the closed-loop stochastic dynamics of two-state nonlinear exothermic CSTRs with PI temperature control”, Comput. Chem. Eng., 174 (2023), 108246 |
50. |
Oberlack M., Arlitt R., Peters N., “On stochastic Damköhler number variations in a homogeneous flow reactor”, Combust. Theory Modell., 4:4 (2000), 495–509 |
51. |
Bashkirtseva I., “Controlling the stochastic sensitivity in thermochemical systems under incomplete information”, Kybernetika, 54:1 (2018), 96–109 |
52. |
Calverley E.M., Witt P.M., Sweeney J.D., “Reactor runaway due to statistically driven axial activity variations in graded catalyst beds”, Chem. Eng. Sci., 80 (2012), 393–401 |
53. |
Ganzer G., Freund H., “Influence of statistical activity variations in diluted catalyst beds on the thermal reactor behavior: Derivation of an a priori criterion”, Chem. Eng. Sci., 220 (2020), 115607 |
54. |
Curl R.L., “Dispersed phase mixing: I. Theory and effects in simple reactors”, AIChE J., 9:2 (1963), 175–181 |
55. |
Kerstein A.R., “One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows”, J. Fluid Mech., 392 (1999), 277–334 |
56. |
Correa S.M., “Turbulence-chemistry interactions in the intermediate regime of premixed combustion”, Combust. Flame, 93:1–2 (1993), 41–60 |
57. |
Iavarone S., Péquin A., Chen Z.X., Doan N.A.K., Swaminathan N., Parente A., “An a priori assessment of the Partially Stirred Reactor (PaSR) model for MILD combustion”, Proc. Combust. Inst., 38:4 (2021), 5403–5414 |
58. |
Медведев В.Г., Телегин В.Г., Телегин Г.Г., “Статистический анализ кинетики адиабатического теплового взрыва”, ФГВ, 2009, № 3, 44–48; Medvedev V.G., Telegin V.G., Telegin G.G., “Statistical analysis of kinetics of an adiabatic thermal explosion”, Combust., Explos., Shock Waves, 45:3 (2009), 274–277 |
59. |
Tomlin A.S., Turányi T., “Investigation and improvement of reaction mechanisms using sensitivity analysis and optimization”, Cleaner Combustion: Developing Detailed Chemical Kinetic Models, Green Energy and Technology, eds. F. Battin-Leclerc, J.M. Simmie, E. Blurock, Springer, London, 2013, 411–445 |
60. |
Gel A., Chaudhari K., Turton R., Nicoletti P., “Application of uncertainty quantification methods for coal devolatilization kinetics in gasifier modeling”, Powder Technol., 265 (2014), 66–75 |
61. |
Fischer M., Vignes A., “An imprecise Bayesian approach to thermal runaway probability”, Proc. 12th Int. Symp. on Imprecise Probability: Theories and Applications, Proceedings of Machine Learning Research (PMLR), 147, 2021, 150–160 |
62. |
Derevich I.V., “Effect of temperature fluctuations of fluid on thermal stability of particles with exothermic chemical reaction”, Int. J. Heat Mass Transfer, 53:25–26 (2010), 5920–5932 |
63. |
Derevich I., Galdina D., “Simulation of thermal explosion of catalytic granule in fluctuating temperature field”, J. Appl. Math. Phys., 1:5 (2013), 1–7 |
64. |
Derevich I.V., Ermolaev V.S., Mordkovich V.Z., Solomonik I.G., Fokina A.Yu., “Heat and mass transfer in Fischer–Tropsch catalytic granule with localized cobalt microparticles”, Int. J. Heat Mass Transfer, 121 (2018), 1335–1349 |
65. |
Донской И.Г., Гросс Е.И., “Численный анализ стохастических закономерностей теплового зажигания в стохастической среде”, Информ. и матем. техн. в науке и управл., 2024, № 1, 66–77 [Donskoy I.G., Gross E.I., “Numerical analysis of thermal ignition statistics in a stochastic reacting medium”, Inf. Mat. Tekh. Nauke Upr., 2024, no. 1, 66–77 (In Russian) ] |
66. |
Деревич И.В., Клочков А.К., “Тепловой взрыв одиночных частиц в случайном поле температуры среды”, ТВТ, 61:1 (2023), 108–117 ; Derevich I.V., Klochkov A.K., “Thermal explosion of single particles in a random medium-temperature field”, High Temp., 61:1 (2023), 98–107 |
67. |
Франк-Каменецкий Д.А., Диффузия и теплопередача в химической кинетике, Наука, М., 1987, 502 с. [Frank-Kamenetskii D.A., Diffusion and Heat Transfer in Chemical Kinetics, Nauka, M., 1987, 502 pp. (In Russian)] |
68. |
Мержанов А.Г., Озерковская Н.И., Шкадинский К.Г., “Динамика теплового взрыва в послеиндукционный период”, ФГВ, 35:6 (1999), 65–70; Merzhanov A.G., Ozerkovskaya N.I., Shkadinskii K.G., “Dynamics of thermal explosion in the postinduction period”, Combust., Explos. Shock Waves, 35:6 (1999), 660–665 |
69. |
Барзыкин В.В., “Тепловой взрыв при линейном нагреве”, ФГВ, 1973, № 1, 37–54; Barzykin V.V. Thermal explosion under linear heating, Combust., Explos. Shock Waves, 9:1 (1973), 29–42 |
70. |
Novozhilov V., “Thermal explosion in oscillating ambient conditions”, Sci. Rep., 6:1 (2016), 29730 |
71. |
Fedotov S.P., “Statistical model of the thermal ignition of a distributed system”, Combust. Flame, 91:1 (1992), 65–70 |
72. |
Kloeden P.E., Platen E., Numerical Solution of Stochastic Differential Equations, Stochastic Modelling and Applied Probability, 23, Springer, Berlin–Heidelberg, 1992, xxxvi+636 pp. |
73. |
Donskoy I., Thermal explosion problem with a stochastic boundary: quasi-stationary approximation and direct numerical modelling, Research Square. Preprint, 2023 |
74. |
Takeno T., “Ignition criterion by thermal explosion theory”, Combust. Flame, 29 (1977), 209–211 |
75. |
Wilke S., Schweitzer B., Khateeb S., Al-Hallaj S., “Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study”, J. Power Sources, 340 (2017), 51–59 |
76. |
Shahid S., Agelin-Chaab M., “A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries”, Energy Convers. Manage.: X, 16 (2022), 100310 |
77. |
Chen M., Sun Q., Li Y., Wu K., Liu B., Peng P., Wang Q., “A thermal runaway simulation on a lithium titanate battery and the battery module”, Energies, 8:1 (2015), 490–500 |
78. |
Feng X., He X., Ouyang M., Wang L., Lu L., Ren D., Santhanagopalan S., “A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries”, J. Electrochem. Soc., 165:16 (2018), A3748 |