RUS  ENG
Полная версия
ЖУРНАЛЫ // Ученые записки Казанского университета. Серия Физико-математические науки

Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки, 2024, том 166, книга 3, страницы 343–363 (Mi uzku1671)

Численное моделирование характеристик зажигания цилиндрического тепловыделяющего образца в среде со случайными колебаниями температуры
И. Г. Донской

Литература

1. Mallick S., Gayen D., “Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – a critical review”, J. Energy Storage, 62 (2023), 106894  crossref
2. Fu H., Wang J., Li L., Gong J., Wang X., “Numerical study of mini-channel liquid cooling for suppressing thermal runaway propagation in a lithium-ion battery pack”, Appl. Therm. Eng., 234 (2023), 121349  crossref
3. Drewry H.P.G., Seaton N.A., “Continuum random walk simulations of diffusion and reaction in catalyst particles”, AIChE J., 41:4 (1995), 880–893  crossref
4. Feres R., Yablonsky G.S., Mueller A., Baernstein A., Zheng X., Gleaves J.T., “Probabilistic analysis of transport-reaction processes over catalytic particles: Theory and experimental testing”, Chem. Eng. Sci., 64:3 (2009), 568–581  crossref
5. Zielinski J.M., Petersen E.E., “Monte Carlo simulation of diffusion and chemical reaction in catalyst pores”, AIChE J., 33:12 (1987), 1993–1997  crossref
6. Garmory A., Richardson E.S., Mastorakos E., “Micromixing effects in a reacting plume by the Stochastic Fields method”, Atmos. Environ, 40:6 (2006), 1078–1091  crossref
7. Ghoniem A.F., Oppenheim A.K., “Numerical solution for the problem of flame propagation by the random element method”, AIAA J., 22:10 (1984), 1429–1435  crossref
8. Бетев А.С., Киверин А.Д., Медведев С.П., Яковенко И.С., “Численное моделирование режимов турбулентного горения водорода вблизи бедного предела”, Хим. физ., 39:12 (2020), 17–23  crossref; Betev A.S., Kiverin A.D., Medvedev S.P., Yakovenko I.S., “Numerical simulation of turbulent hydrogen combustion regimes near the lean limit”, Russ. J. Phys. Chem., 14:6 (2020), 940–945  crossref
9. Tunér M., Stochastic reactor models for engine simulations, Doctoral Thesis, Lund Univ., Lund, 2008, 194 pp.
10. Keil F.J., “Diffusion and reaction in porous networks”, Catal. Today, 53:2 (1999), 245–258  crossref
11. Zhdanov V.P., Kasemo B., “Simulations of the reaction kinetics on nanometer supported catalyst particles”, Surf. Sci. Rep., 39:2–4 (2000), 25–104  crossref
12. Kerstein A.R., Edwards B.F., “Percolation model for simulation of char oxidation and fragmentation time-histories”, Chem. Eng. Sci., 42:7 (1987), 1629–1634  crossref
13. Гринчук П.С., “Горение гетерогенных систем со стохастической пространственной структурой вблизи пределов распространения”, ИФЖ, 86:4 (2013), 819–831; Grinchuk P.S., “Combustion of heterogeneous systems with a stochastic spatial structure near the propagation limits”, J. Eng. Phys. Thermophys., 86:4 (2013), 875–887  crossref
14. Xin H., Wang C., Louw E., Wang D., Mathews J.P., “Atomistic simulation of coal char isothermal oxy-fuel combustion: Char reactivity and behavior”, Fuel, 182 (2016), 935–943  crossref
15. Panga M.K.R., Ziauddin M., Balakotaiah V., “Two-scale continuum model for simulation of wormholes in carbonate acidization”, AIChE J., 51:12 (2005), 3231–3248  crossref
16. Baras F., Nicolis G., Mansour M.M., Turner J.W., “Stochastic theory of adiabatic explosion”, J. Stat. Phys., 32:1 (1983), 1–23  crossref
17. de Pasquale F., Mecozzi A., “Theory of chemical fluctuations in thermal explosions”, Phys. Rev. A, 31:4 (1985), 2454  crossref
18. Fernandez A., “Theory of scaling for fluctuations in thermal explosion conditions”, Ber. Bunsenges. Phys. Chem., 91:2 (1987), 159–163  crossref
19. Frankowicz M., Nicolis G., “Transient evolution towards a unique stable state: Stochastic analysis of explosive behavior in a chemical system”, J. Stat. Phys., 3:3 (1983), 595–609  crossref
20. Frankowicz M., Mansour M.M., Nicolis G., “Stochastic analysis of explosive behaviour: A qualitative approach”, Physica, 125:1 (1984), 237–246  crossref
21. van Kampen N.G., “Intrinsic fluctuations in explosive reactions”, J. Stat. Phys., 46:5 (1987), 933–948  crossref
22. Vlad M.O., Ross J., “A stochastic approach to nonequilibrium chain reactions in disordered systems: Breakdown of eikonal approximation”, Int. J. Thermophys., 18:4 (1997), 957–975  crossref
23. Gorecki J., Popielawski J., “On the stochastic theory of adiabatic thermal explosion in small systems - numerical results”, J. Stat. Phys., 44:5 (1986), 941–954  crossref
24. Zheng Q., Ross J., “Comparison of deterministic and stochastic kinetics for nonlinear systems”, J. Chem. Phys., 94:5 (1991), 3644–3648  crossref
25. Chou D.-P., Lackner T., Yip S., “Fluctuation effects in models of adiabatic explosion”, J. Stat. Phys., 69:1 (1992), 193–215  crossref
26. Nowakowski B., Lemarchand A., “Thermal explosion near bifurcation: Stochastic features of ignition”, Phys. A, 311:1–2 (2002), 80–96  crossref
27. Lemarchand A., Nowakowski B., “Fluctuation-induced and nonequilibrium-induced bifurcations in a thermochemical system”, Mol. Simul., 30:11–12 (2004), 773–780  crossref
28. Буевич Ю.А., Федотов С.П., “Формирование режимов гетерогенной реакции под воздействием мультипликативного шума”, ИФЖ, 53:5 (1987), 802–807; Buevich Yu.A., Fedotov S.P., “Formation of heterogeneous reaction regimes under the action of multiplicative noise”, J. Eng. Phys., 53:5 (1987), 1302–1306  crossref
29. Wei J., “Irreversible thermodynamics in engineering”, Ind. Eng. Chem., 58:10 (1966), 55–60  crossref
30. van der Broeck C., Parrondo J.M.R., Toral R., Kawai R., “Nonequilibrium phase transitions induced by multiplicative noise”, Phys. Rev. E, 55:4 (1997), 4084  crossref
31. Bedeaux D., Pagonabarraga I., Ortiz de Zárate J.M., Sengers J.V., Kjelstrup S., “Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion”, Phys. Chem. Chem. Phys., 12 (2010), 12780–12793  crossref
32. Bochkov G.N., Orlov A.L., Kolpashchikov V.L., “Fluctuation-dissipation models of mass transfer in systems with chemical reactions”, Int. Commun. Heat Mass Transfer, 12:1 (1985), 33–43  crossref
33. Schmiedl T., Seifert U., “Stochastic thermodynamics of chemical reaction networks”, J. Chem. Phys., 126 (2007), 044101  crossref
34. Ge H., Qian H., “Mathematical formalism of nonequilibrium thermodynamics for nonlinear chemical reaction systems with general rate law”, J. Stat. Phys., 166:1 (2017), 190–209  crossref
35. Darvey I.G., Staff P.J., “Stochastic approach to first-order chemical reaction kinetics”, J. Chem. Phys., 44 (1966), 990–997  crossref
36. van Kampen N.G., “The equilibrium distribution of a chemical mixture”, Phys. Lett. A, 59:5 (1976), 333–334  crossref
37. Gillespie D.T., “Stochastic simulation of chemical kinetics”, Annu. Rev. Phys. Chem., 58 (2007), 35–55  crossref
38. Higham D.J., “Modeling and simulating chemical reactions”, SIAM Rev., 50:2 (2008), 347–368  crossref
39. Sandu A., “A new look at the chemical master equation”, Numer. Algorithms, 65:3 (2014), 485–498  crossref
40. Schlögl F., “Stochastic measures in nonequilibrium thermodynamics”, Phys. Rep., 62:4 (1980), 267–380  crossref
41. Montefusco A., Peletier M.A., Öttinger H.C., “A framework of nonequilibrium statistical mechanics. II. Coarse-graining”, J. Non-Equilib. Thermodyn., 46:1 (2021), 15–33  crossref
42. Fernández A., Rabitz H., “The scaling of nonequilibrium fluctuations in gaseous thermal explosions”, Ber. Bunsenges. Phys. Chem., 92:6 (1988), 754–760  crossref
43. Baer M.R., Gartling D.K., Desjardin P.E., “Probabilistic models for reactive behaviour in heterogeneous condensed phase media”, Combust. Theory Modell., 16:1 (2012), 75–106  crossref
44. Fedotov S.P., “Stochastic analysis of the thermal ignition of a distributed explosive system”, Phys. Lett. A, 176:3–4 (1993), 220–224  crossref
45. Baratti R., Tronci S., Schaum A., Alvarez J., “Dynamics of nonlinear chemical process with multiplicative stochastic noise”, IFAC-PapersOnLine, 49:7 (2016), 869–874  crossref
46. Schaum A., Tronci S., Baratti R., Alvarez J., “On the dynamics and robustness of the chemostat with multiplicative noise”, IFAC-PapersOnLine, 54:3 (2021), 342–347  crossref
47. Leicher J., Wirtz S., Scherer V., “Evaluation of an entropy-based combustion model using stochastic reactors”, Chem. Eng. Technol., 31:7 (2008), 964–970  crossref
48. Rao N.J., Ramkrishna D., Borwanker J.D., “Nonlinear stochastic simulation of stirred tank reactors”, Chem. Eng. Sci., 29:5 (1974), 1193–1204  crossref
49. Alvarez J., Baratti R., “On the closed-loop stochastic dynamics of two-state nonlinear exothermic CSTRs with PI temperature control”, Comput. Chem. Eng., 174 (2023), 108246  crossref
50. Oberlack M., Arlitt R., Peters N., “On stochastic Damköhler number variations in a homogeneous flow reactor”, Combust. Theory Modell., 4:4 (2000), 495–509  crossref
51. Bashkirtseva I., “Controlling the stochastic sensitivity in thermochemical systems under incomplete information”, Kybernetika, 54:1 (2018), 96–109  crossref
52. Calverley E.M., Witt P.M., Sweeney J.D., “Reactor runaway due to statistically driven axial activity variations in graded catalyst beds”, Chem. Eng. Sci., 80 (2012), 393–401  crossref
53. Ganzer G., Freund H., “Influence of statistical activity variations in diluted catalyst beds on the thermal reactor behavior: Derivation of an a priori criterion”, Chem. Eng. Sci., 220 (2020), 115607  crossref
54. Curl R.L., “Dispersed phase mixing: I. Theory and effects in simple reactors”, AIChE J., 9:2 (1963), 175–181  crossref
55. Kerstein A.R., “One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows”, J. Fluid Mech., 392 (1999), 277–334  crossref
56. Correa S.M., “Turbulence-chemistry interactions in the intermediate regime of premixed combustion”, Combust. Flame, 93:1–2 (1993), 41–60  crossref
57. Iavarone S., Péquin A., Chen Z.X., Doan N.A.K., Swaminathan N., Parente A., “An a priori assessment of the Partially Stirred Reactor (PaSR) model for MILD combustion”, Proc. Combust. Inst., 38:4 (2021), 5403–5414  crossref
58. Медведев В.Г., Телегин В.Г., Телегин Г.Г., “Статистический анализ кинетики адиабатического теплового взрыва”, ФГВ, 2009, № 3, 44–48; Medvedev V.G., Telegin V.G., Telegin G.G., “Statistical analysis of kinetics of an adiabatic thermal explosion”, Combust., Explos., Shock Waves, 45:3 (2009), 274–277  crossref
59. Tomlin A.S., Turányi T., “Investigation and improvement of reaction mechanisms using sensitivity analysis and optimization”, Cleaner Combustion: Developing Detailed Chemical Kinetic Models, Green Energy and Technology, eds. F. Battin-Leclerc, J.M. Simmie, E. Blurock, Springer, London, 2013, 411–445  crossref
60. Gel A., Chaudhari K., Turton R., Nicoletti P., “Application of uncertainty quantification methods for coal devolatilization kinetics in gasifier modeling”, Powder Technol., 265 (2014), 66–75  crossref
61. Fischer M., Vignes A., “An imprecise Bayesian approach to thermal runaway probability”, Proc. 12th Int. Symp. on Imprecise Probability: Theories and Applications, Proceedings of Machine Learning Research (PMLR), 147, 2021, 150–160
62. Derevich I.V., “Effect of temperature fluctuations of fluid on thermal stability of particles with exothermic chemical reaction”, Int. J. Heat Mass Transfer, 53:25–26 (2010), 5920–5932  crossref
63. Derevich I., Galdina D., “Simulation of thermal explosion of catalytic granule in fluctuating temperature field”, J. Appl. Math. Phys., 1:5 (2013), 1–7  crossref
64. Derevich I.V., Ermolaev V.S., Mordkovich V.Z., Solomonik I.G., Fokina A.Yu., “Heat and mass transfer in Fischer–Tropsch catalytic granule with localized cobalt microparticles”, Int. J. Heat Mass Transfer, 121 (2018), 1335–1349  crossref
65. Донской И.Г., Гросс Е.И., “Численный анализ стохастических закономерностей теплового зажигания в стохастической среде”, Информ. и матем. техн. в науке и управл., 2024, № 1, 66–77  crossref [Donskoy I.G., Gross E.I., “Numerical analysis of thermal ignition statistics in a stochastic reacting medium”, Inf. Mat. Tekh. Nauke Upr., 2024, no. 1, 66–77 (In Russian)  crossref]
66. Деревич И.В., Клочков А.К., “Тепловой взрыв одиночных частиц в случайном поле температуры среды”, ТВТ, 61:1 (2023), 108–117  mathnet  crossref; Derevich I.V., Klochkov A.K., “Thermal explosion of single particles in a random medium-temperature field”, High Temp., 61:1 (2023), 98–107  crossref
67. Франк-Каменецкий Д.А., Диффузия и теплопередача в химической кинетике, Наука, М., 1987, 502 с. [Frank-Kamenetskii D.A., Diffusion and Heat Transfer in Chemical Kinetics, Nauka, M., 1987, 502 pp. (In Russian)]
68. Мержанов А.Г., Озерковская Н.И., Шкадинский К.Г., “Динамика теплового взрыва в послеиндукционный период”, ФГВ, 35:6 (1999), 65–70; Merzhanov A.G., Ozerkovskaya N.I., Shkadinskii K.G., “Dynamics of thermal explosion in the postinduction period”, Combust., Explos. Shock Waves, 35:6 (1999), 660–665  crossref
69. Барзыкин В.В., “Тепловой взрыв при линейном нагреве”, ФГВ, 1973, № 1, 37–54; Barzykin V.V. Thermal explosion under linear heating, Combust., Explos. Shock Waves, 9:1 (1973), 29–42  crossref
70. Novozhilov V., “Thermal explosion in oscillating ambient conditions”, Sci. Rep., 6:1 (2016), 29730  crossref
71. Fedotov S.P., “Statistical model of the thermal ignition of a distributed system”, Combust. Flame, 91:1 (1992), 65–70  crossref
72. Kloeden P.E., Platen E., Numerical Solution of Stochastic Differential Equations, Stochastic Modelling and Applied Probability, 23, Springer, Berlin–Heidelberg, 1992, xxxvi+636 pp.  crossref
73. Donskoy I., Thermal explosion problem with a stochastic boundary: quasi-stationary approximation and direct numerical modelling, Research Square. Preprint, 2023  crossref
74. Takeno T., “Ignition criterion by thermal explosion theory”, Combust. Flame, 29 (1977), 209–211  crossref
75. Wilke S., Schweitzer B., Khateeb S., Al-Hallaj S., “Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study”, J. Power Sources, 340 (2017), 51–59  crossref
76. Shahid S., Agelin-Chaab M., “A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries”, Energy Convers. Manage.: X, 16 (2022), 100310  crossref
77. Chen M., Sun Q., Li Y., Wu K., Liu B., Peng P., Wang Q., “A thermal runaway simulation on a lithium titanate battery and the battery module”, Energies, 8:1 (2015), 490–500  crossref
78. Feng X., He X., Ouyang M., Wang L., Lu L., Ren D., Santhanagopalan S., “A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries”, J. Electrochem. Soc., 165:16 (2018), A3748  crossref


© МИАН, 2025