RUS  ENG
Full version
JOURNALS // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki

Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 2009, Volume 151, Book 3, Pages 130–143 (Mi uzku792)

Non-uniqueness of a stationary viscous flow in the square lid-driven cavity
A. G. Egorov, A. N. Nuriev

References

1. Prasad A. K., Koseff J. R., “Reynolds number and end-wall effects on a lid-driven cavity flow”, Phys. Fluids, 1:2 (1989), 208–218  crossref  adsnasa  isi
2. Shankar P. N., Deshpande M. D., “Fluid Mechanics in the Driven Cavity”, Annu. Rev. Fluid Mech., 32 (2000), 93–136  crossref  mathscinet  zmath  adsnasa  isi
3. Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 205 pp.  mathscinet
4. Ghia U., Ghia K. N., Shin C. T., “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method”, J. Comp. Phys., 48 (1982), 387–411  crossref  zmath  adsnasa  isi
5. Barragy E., Carey G. F., “Stream Function-Vorticity Driven Cavity Solutions Using p Finite Elements”, Computers and Fluids, 26 (1997), 453–468  crossref  zmath  isi
6. Erturk E., Corke T. C., Gokcol C., “Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers”, Int. J. Numer. Meth. Fluids, 48 (2005), 747–774  crossref  zmath  isi
7. Erturk E., Gokcol C., “Fourth Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers”, Int. J. Numer. Meth. Fluids, 50 (2006), 421–436  crossref  zmath  isi
8. Isaev S. A. i dr., “Modelirovanie laminarnogo tsirkulyatsionnogo techeniya v kvadratnoi kaverne s podvizhnoi granitsei pri vysokikh chislakh Reinoldsa”, Inzhenerno-fiz. zhurn., 75:1 (2002), 55–60
9. Isaev S. A. i dr., “Modelirovanie laminarnogo tsirkulyatsionnogo techeniya v kvadratnoi kaverne s podvizhnoi granitsei pri vysokikh chislakh Reinoldsa s pomoschyu paketov VP2/3 i FLUENT”, Inzhenerno-fiz. zhurn., 78:4 (2005), 163–179  mathscinet  elib
10. Fortin A. et al., “Localization of Hopf bifurcations in Fluid Flow problems”, Int. J. Numer. Meth. Fluids, 24 (1997), 1185–1210  crossref  mathscinet  zmath
11. Sahin M., Owens R. G., “A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Part II. Linear stability analysis”, Int. J. Numer. Meth. Fluids, 42 (2003), 79–88  crossref  mathscinet  zmath  isi
12. Cazemier W., Verstappen R. W. C. P., Veldman A. E. P., “Proper orthogonal decomposition and low-dimensional models for driven cavity flows”, Phys. Fluids, 10:7 (1998), 1685–1698  crossref  adsnasa  isi
13. Fletcher K., Vychislitelnye metody v dinamike zhidkostei, v. 2, Mir, M., 1991, 552 pp.  mathscinet
14. Weinan E., Liu J. G., “Vorticity boundary conditions and related issues for finite difference schemes”, J. Comp. Phys., 124 (1996), 368–382  crossref  mathscinet  zmath
15. Trottenberg U., Oosterlee C. W., Schuller A., Multigrid, Acad. Press, London, 2001, 631 pp.  mathscinet  zmath
16. Roache P. J., “Quantification of uncertainty in computational fluid dynamics”, Annu. Rev. Fluid Mech., 29 (1997), 123–160  crossref  mathscinet  adsnasa  isi
17. Nuriev A. N., “Ustoichivost ploskogo statsionarnogo techeniya v kaverne s podvizhnoi kryshkoi”, Trudy matem. tsentra im. Lobachevskogo, 37, 2008, 133–135
18. Gomes F. M., Sorensen D. C., ARPACK++: A C++ Implementation of ARPACK Eigenvalue Package www.caam.rice.edu/software/ARPACK/
19. Kuznetsov Y. A., Elements of Applied Bifurcation Theory, Springer, Berlin, 1995, 591 pp.  mathscinet  zmath
20. Johannsen K., “On the validity of the Boussinesq approximation for the Elder problem”, Comp. Geosci., 7 (2003), 169–182  crossref  mathscinet  zmath  isi
21. Abouhamza A., Pierre R., “A neutral stability curve for incompressible flows in a rectangular driven cavity”, Math. Comp. Modelling, 38 (2003), 141–157  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025