RUS  ENG
Full version
JOURNALS // Vestnik KRAUNC. Fiziko-Matematicheskie Nauki

Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, Number 3(14), Pages 7–13 (Mi vkam138)

Conservation laws and similarity reduction of the Zoomeron equation
S. Hejazi, A. Naderifard, S. Rashidi

References

1. Calogero F., Degasperis A., “Non-linear evolution equations solvable by the inverse spectral transform I”, Nuovo Cimento B, 32 (1976), 201-242  crossref  mathscinet  isi  scopus
2. Bluman G., Cheviakov A., Anco C., “Applications of Symmetry Methods to partial Differential Equations”, Appl. Math. Sci, 168 (2010), 43-70  mathscinet
3. Craddock M., Lennox K., “Lie group symmetries as integral transforms of fundamental solutions”, J. Differential Equations, 232:2 (2007), 652-674  crossref  mathscinet  zmath  isi  scopus
4. Abazari R., “The solitary wave solutions of Zoomeron equation”, Appl. Math. Sci., 5 (2011), 2943-2949  mathscinet  zmath
5. Alquran M., Al-Khaled K., “Mathematical methods for a reliable treatment of the (2+1)-dimensional Zoomeron equation”, Math. Sci., 6 (2012), 11-15  crossref  mathscinet
6. Craddock M., Platen E., “Symmety group methods for fundamental solutions”, J. Differential Equations, 207:2 (2007), 285-302  crossref  mathscinet  isi  scopus
7. Liu H. Z. , Li J. B., “Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations”, J. Comput. Appl. Math., 257 (2014), 144-156  crossref  mathscinet  zmath  isi  scopus
8. Olver P., Applications of Lie Groups to Differential Equations, Grad. Texts in Math., 107, Springer, New York, 1993  crossref  mathscinet  zmath
9. Ibragimov N. H., “Nonlinear self-adjointness in constructing conservation laws”, Archives of ALGA, 7-8 (2010-2011), 1-99


© Steklov Math. Inst. of RAS, 2025