|
|
|
References
|
|
|
1. |
Kearey Ph., The Encyclopedia of Solid Earth Sciences, Blackwell Sci., 1993, 722 pp. |
2. |
Makovetskii V. I., Dudchenko I. P., Zakupin A. S., “Avtokolebatelnaya model istochnikov mikroseism”, Geosistemy perekhodnykh zon, 2017, no. 4(1), 37-46 |
3. |
Shpielberg O., Akkermans E. Le, “Chatelier principle for out-of-equilibrium and boundary-driven systems: Application to dynamical phase transitions”, Physical review letters, 116:24 (2016), 240603 |
4. |
Selkov E. E., “Self-oscillations in glycolysis. I. A simple kinetic model”, Eur. J. Biochem., 4 (1968), 79–86 |
5. |
Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdogo tela, Mir, M., 1980, 392 pp. |
6. |
Volterra V., “Sur les' equations int'egro-differentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 |
7. |
Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. |
8. |
Oldham K. B., Spanier J., The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, Academic Press, London, 1974, 240 pp. |
9. |
Miller K. S., Ross B., An introduction to the fractional calculus and fractional differntial equations, A Wiley-Interscience publication, New York, 1993, 384 pp. |
10. |
Petras I., Fractional Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing-Springer-Verlag Berlin Heidelberg, 2011. |
11. |
Brechmann P., Rendall A. D., “Dynamics of the Selkov oscillator”, Mathematical Biosciences, 306 (2018), 152-159 DOI: 10.1016/j.mbs.2018.09.012. |
12. |
Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: A review”, Proc. R. Soc. A R. Soc. Publ., 476 (2020), 20190498 DOI: 10.1098/rspa.2019.0498. |
13. |
Garrappa R., “Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial”, Mathematics, 6:16 DOI:10.3390/math6020016. (2018) |
14. |
Yang C., Liu F., “A computationally effective predictor-corrector method for simulating fractional-order dynamical control system”, ANZIAM J., 47 (2006), 168–184 DOI: 10.21914/anziamj.v47i0.1037 |
15. |
Diethelm K, Ford N.J., Freed A.D., “A predictor-corrector approach for the numerical solution of fractional differential equations”, Nonlinear Dyn., 29 (2002), 3-22 DOI: 10.1023/A:1016592219341 |
16. |
Parovik R., Rakhmonov Z., Zunnunov R., “Modeling of fracture concentration by Sel’kov fractional dynamic system”, E3S Web of Conferences, 196 (2020), 02018 |
17. |
Parovik R. I., “Research of the stability of some hereditary dynamic systems”, Journal of Physics: Conference Series, 1141:1 (2018), 012079 |
18. |
Parovik R. I., “Chaotic modes of a non-linear fractional oscillator”, IOP Conference Series: Materials Science and Engineering, 919:5 (2020), 052040 |
19. |
Parovik R. I., “Quality factor of forced oscillations of a linear fractional oscillator”, Technical Physics, 65:7 (2020), 1015-1019 |
20. |
Benettin G., Galgani L., Giorgilli A., Strelcyn J. M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory”, Meccanica, 15:1 (1980), 9-20 |
21. |
Wolf A., Swift, J. B., Swinney, H. L., Vastano, J. A., “Determining Lyapunov exponents from a time series”, Physica D: nonlinear phenomena, 16:3 (1985), 285-317 |
22. |
Ma S., Xu Y., Yue W., “Numerical solutions of a variable-order fractional financial system”, Journal of Applied Mathematics. 2012 (2012), 417942 DOI: 10.1155/2012/417942. |
23. |
Geist K., Parlitz U., Lauterborn W., “Comparision of different methods for computing Lyapunov exponents”, Prog. Theor. Phys., 83:5 (1990) |
24. |
Parovik R. I., “Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms”, Mathematics, 10(22) (2022), 4208 DOI: 10.3390/math10224208. |