RUS  ENG
Full version
JOURNALS // Vestnik KRAUNC. Fiziko-Matematicheskie Nauki

Vestnik KRAUNC. Fiz.-Mat. Nauki, 2023, Volume 43, Number 2, Pages 69–86 (Mi vkam602)

Applicability of genetic algorithms for determining the weighting coefficients of an artificial neural network with one hidden layer
A. D. Smorodinov, T. V. Gavrilenko, V. A. Galkin

References

1. Galkin V. A., Gavrilenko T. V., Smorodinov A. D., “Nekotorye aspekty approksimatsii i interpolyatsii funktsii iskusstvennymi neironnymi setyami”, Vestnik KRAUNTs. Fiz.-mat. nauki, 38:1 (2022), 54-73 DOI: 10.26117/2079-6641-2022-38-1-54-73  mathnet  crossref  mathscinet  zmath
2. Holland J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence, The MIT Press, Cambridge, 1992  mathscinet
3. Goldberg D., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Massachusetts, 1989  zmath
4. Sholle F., Glubokoe obuchenie na Python, Piter, SPb, 2018, 400 pp.
5. Zakharov I. V. , Shushakov A. O., Zykova S. S., “The Choice of Structures of Heterogeneous Information-Computer Systems Based on the Apparatus of Genetic Algorithms”, Intellektualnye tekhnologii na transporte, 2022, no. 3(31), 46-51 DOI: 10.24412/2413-2527-2022-331-46-51
6. Bedin D. A., Ivanov A. G., “Ispolzovanie geneticheskogo algoritma dlya opredeleniya parametrov mnogogipoteznogo algoritma vosstanovleniya traektorii vozdushnogo sudna”, XXVI Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam, Sbornik materialov, Sankt-Peterburg, 27–29 maya 2019 goda, “Kontsern "Tsentralnyi nauchno-issledovatelskii institut "Elektropribor”, Sankt-Peterburg, 2019, 87-90
7. Alkhussain A. Kh., “Simmetrichnyi algoritm shifrovaniya s pomoschyu geneticheskogo algoritma i generatorov psevdosluchainykh chisel”, Estestvennye i tekhnicheskie nauki, 2015, no. 7(85), 75-81
8. Stefanyuk V. L., Alkhussain A. Kh., “Kriptografiya s simmetrichnym klyuchom s ispolzovaniem geneticheskogo algoritma”, KII-2014, Chetyrnadtsataya natsionalnaya konferentsiya po iskusstvennomu intellektu s mezhdunarodnym uchastiem, v. 1, RITs «Shkola», Kazan, 2014, 267-275
9. Trokoz D. A., “Algoritm mashinnogo obucheniya shirokikh neironnykh setei s ispolzovaniem algebry giperrazmernykh dvoichnykh vektorov i geneticheskikh algoritmov”, Yuzhno-Sibirskii nauchnyi vestnik, 2020, no. 6(34), 148-154
10. Nair V., Hinton G. E., “Rectified Linear Units Improve Restricted Boltzmann Machines”, 27th International Conference on International Conference on Machine Learning., Omnipress, USA, 2010, 807–814
11. Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng., “Rectifier nonlinearities improve neural network acoustic models”, Proc. ICML, 30:1 (2013)
12. Tieleman, Tijmen and Hinton, Geoffrey, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural Networks for Machine Learning, 2012
13. Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, Dokl. AN SSSR, 114:5 (1957), 953–956  mathnet  zmath
14. Klambauer G., Unterthiner T., Mayr A., Hochreiter S., “Self-Normalizing Neural Networks”, Advances in Neural Information Processing Systems, 30:2017 (2017), arXiv: 170602515k
15. Clevert, Djork-Arné; Unterthiner, Thomas Hochreiter, Fast and Accurate Deep Network Learning by Exponential Linear Units, 2015, arXiv: 1511.07289


© Steklov Math. Inst. of RAS, 2025