|
|
|
References
|
|
|
1. |
Galkin V. A., Gavrilenko T. V., Smorodinov A. D., “Nekotorye aspekty approksimatsii i interpolyatsii funktsii iskusstvennymi neironnymi setyami”, Vestnik KRAUNTs. Fiz.-mat. nauki, 38:1 (2022), 54-73 DOI: 10.26117/2079-6641-2022-38-1-54-73 |
2. |
Holland J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence, The MIT Press, Cambridge, 1992 |
3. |
Goldberg D., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Massachusetts, 1989 |
4. |
Sholle F., Glubokoe obuchenie na Python, Piter, SPb, 2018, 400 pp. |
5. |
Zakharov I. V. , Shushakov A. O., Zykova S. S., “The Choice of Structures of Heterogeneous Information-Computer Systems Based on the Apparatus of Genetic Algorithms”, Intellektualnye tekhnologii na transporte, 2022, no. 3(31), 46-51 DOI: 10.24412/2413-2527-2022-331-46-51 |
6. |
Bedin D. A., Ivanov A. G., “Ispolzovanie geneticheskogo algoritma dlya opredeleniya parametrov mnogogipoteznogo algoritma vosstanovleniya traektorii vozdushnogo sudna”, XXVI Sankt-Peterburgskaya mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam, Sbornik materialov, Sankt-Peterburg, 27–29 maya 2019 goda, “Kontsern "Tsentralnyi nauchno-issledovatelskii institut "Elektropribor”, Sankt-Peterburg, 2019, 87-90 |
7. |
Alkhussain A. Kh., “Simmetrichnyi algoritm shifrovaniya s pomoschyu geneticheskogo algoritma i generatorov psevdosluchainykh chisel”, Estestvennye i tekhnicheskie nauki, 2015, no. 7(85), 75-81 |
8. |
Stefanyuk V. L., Alkhussain A. Kh., “Kriptografiya s simmetrichnym klyuchom s ispolzovaniem geneticheskogo algoritma”, KII-2014, Chetyrnadtsataya natsionalnaya konferentsiya po iskusstvennomu intellektu s mezhdunarodnym uchastiem, v. 1, RITs «Shkola», Kazan, 2014, 267-275 |
9. |
Trokoz D. A., “Algoritm mashinnogo obucheniya shirokikh neironnykh setei s ispolzovaniem algebry giperrazmernykh dvoichnykh vektorov i geneticheskikh algoritmov”, Yuzhno-Sibirskii nauchnyi vestnik, 2020, no. 6(34), 148-154 |
10. |
Nair V., Hinton G. E., “Rectified Linear Units Improve Restricted Boltzmann Machines”, 27th International Conference on International Conference on Machine Learning., Omnipress, USA, 2010, 807–814 |
11. |
Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng., “Rectifier nonlinearities improve neural network acoustic models”, Proc. ICML, 30:1 (2013) |
12. |
Tieleman, Tijmen and Hinton, Geoffrey, Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude, COURSERA: Neural Networks for Machine Learning, 2012 |
13. |
Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, Dokl. AN SSSR, 114:5 (1957), 953–956 |
14. |
Klambauer G., Unterthiner T., Mayr A., Hochreiter S., “Self-Normalizing Neural Networks”, Advances in Neural Information Processing Systems, 30:2017 (2017), arXiv: 170602515k |
15. |
Clevert, Djork-Arné; Unterthiner, Thomas Hochreiter, Fast and Accurate Deep Network Learning by Exponential Linear Units, 2015, arXiv: 1511.07289 |