RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, Issue 1(34), Pages 66–85 (Mi vsgtu1310)

On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics
V. A. Kovalev, Yu. N. Radayev

References

1. N. M. Günter, Kurs variatsionnogo ischisleniya [Course in the Calculus of Variations], Moscow, Leningrad, 1941, 308 pp. (In Russian)
2. V. L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 448 pp.  mathscinet; V. Berdichevsky, Variational Principles of Continuum Mechanics, Interaction of Mechanics and Mathematics, Springer, Heidelberg, Dordrecht, London, New York, 2009  crossref  zmath;  crossref  zmath
3. V. A. Kovalev, Yu. N. Radayev, Elementy teorii polya: variatsionnyye simmetrii i geometricheskiye invarianty [Elements of the field theory: variational symmetries and geometric invariants], Fizmatlit, Moscow, 2009, 156 pp. (In Russian)
4. V. A. Kovalev, YU. N. Radayev, Volnovye zadachi teorii polya i termomekhanika [Wave problems of the field theory and thermomechanics], Saratov Univ. Publ., Saratov, 2010, 328 pp. (In Russian)
5. L. V. Ovsyannikov, Gruppovoy analiz differentsial'nykh uravneniy [Group analysis of differential equations], Nauka, Moscow, 1978, 400 pp. (In Russian)  mathscinet
6. R. A. Toupin, “Theories of elasticity with couple-stress”, Arch. Rational Mech. Anal., 17:5 (1964), 85–112  crossref  mathscinet  zmath  adsnasa
7. L. I. Sedov, Vvedeniye v mekhaniku sploshnykh sred [Introduction in continuum mechanics], Fizmatgiz, Moscow, 1962, 284 pp. (In Russian)  mathscinet
8. A. A. Ilyushin, Mekhanika sploshnykh sred [Continuum mechanics], Moscow University Press, Moscow, 1978, 287 pp. (In Russian)
9. A. E. Green, J. E. Adkins, Large elastic deformations and non-linear continuum mechanics, Claredon Press, Oxford, 1960, xiii+348 pp.  mathscinet  zmath; A. Grin, Dzh. Adkins, Bolshie uprugie deformatsii i nelineinaya mekhanika sploshnoi sredy, Mir, M., 1965, 456 pp.  mathscinet
10. Yu. N. Radayev, Kontinualnye modeli povrezhdennosti tverdykh tel [A continuum damage model of solid bodies], Dissertation of Doctor of Science (Phys. & Math.), Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, 1999, 380 pp. (In Russian)
11. E. Cosserat, F. Cosserat, Théorie des corps déformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp. (Reprint, 2009)
12. V. A. Kovalev, Yu. N. Radaev, “Derivation of energy-momentum tensors in theories of micropolar hyperbolic thermoelasticity”, Mechanics of Solids, 46:5 (2011), 705–720  crossref  mathscinet  isi  elib  elib
13. V. A. Kovalev, Yu. N. Radayev, “Covariant field formulations and models of non-linear hyperbolic micropolar thermoelasticity”, Sb. dokladov XXXVI Dal'nevostochnoy matematicheskoy shkoly-seminara im. akad. E. V. Zolotova [Proc. of XXXVI Far Eastern Math. School–Seminar of Academician E. V. Zolotov], Vladivostok, 2012, 137–142 pp. (In Russian)
14. V. A. Kovalev, Yu. N. Radayev, “On precisely conserved quantities of coupled micropolar thermoelastic field”, Izv. Saratov. Univ. Mat. Mekh. Inform., 12:4 (2012), 71–79 (In Russian)  mathnet  zmath
15. V. A. Kovalev, Yu. N. Radayev, “Covariant forms of jump equations on shock surfaces in micropolar thermoelastic continuum: a hyperbolic theory”, Trudy XVI Mezhd. konf. Sovremennyye problemy mekhaniki sploshnoy sredy [Proc. of XVI International Conference on Modern Problems of Continuum Mechanics], v. 2, Rostov-on-Don, 2012, 99–103 (In Russian)


© Steklov Math. Inst. of RAS, 2025