RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, Issue 1(22), Pages 196–220 (Mi vsgtu860)

An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity
V. A. Kovalev, Yu. N. Radaev

References

1. Hill R., The Mathematical Theory of Plasticity, Reprint of the 1950 original, v. 11, Oxford Classic Texts in the Physical Sciences. Oxford Engineering Science Series, The Clarendon Press, Oxford University Press, New York, 1988, 366 pp.  mathscinet; Khill R., Matematicheskaya teoriya plastichnosti, Gostekhteoretizdat, M., 1956, 407 pp.
2. Freudental A. M., Geiringer H., “The mathematical theories of the inelastic continuum”, Handbuch der Physik, v. 6, Elastizität und Plastizität, ed. S. Flügge, Springer-Verlag, Berlin – Göttingen – Heidelberg, 1958, 229–433  crossref  mathscinet; Freidental A., Geiringer Kh., Matematicheskie teorii neuprugoi sploshnoi sredy, Fizmatgiz, M., 1962, 432 pp.
3. Kachanov L. M., Principles of Plasticity Theory, Nauka, Moscow, 1969, 420 pp.
4. Sokolovsky V. V., Theory of plasticity, Vyssh. shk., Moscow, 1969, 608 pp.
5. Ivlev D. D., Theory of ideal plasticity, Nauka, Moscow, 1966, 232 pp.  mathscinet  zmath
6. Ivlev D. D., “The world is elliptic and the world is hyperbolic”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2005, no. 5(39), 33–41  mathscinet  zmath
7. Ivlev D. D. On relations defining plastic flow under Tresca condition of plasticity and its generalizations, Sov. Phys. Dokl., 4 (1959), 217–220  mathscinet  zmath  adsnasa
8. Radaev Yu. N., “On Poincaré's canonical transformations and the invariants of the plastic equilibrium equations”, Izv. AN SSSR. MTT, 1990, no. 1, 86–94
9. Radaev Yu. N., “On the theory of three-dimensional equations of the mathematical theory of plasticity”, Izv. RAN. MTT, 2003, no. 5, 102–120
10. Radaev Yu. N., Spatial Problem of Mathematical Theory of Plasticity, Izd-vo Samar. Univ., Samara, 2006, 340 pp.
11. Ovsjannikov L. V., Group analysis of differential equations, Nauka, Moscow, 1978, 399 pp.  mathscinet  zmath
12. Olver P. J., Application of Lie Groups to Differential Equations, v. 107, Graduate Texts in Mathematics, Springer, New York, 1986, 497 pp.  crossref  mathscinet  zmath; Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp.  mathscinet  zmath
13. Olver P. J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, New York, Melbourne, 1995, 526 pp.  mathscinet  zmath
14. Kovalev V. A., Radaev Yu. N., Elements of the classical field theory: variational symmetries and geometric invariants, Fizmatlit, Moscow, 2009, 156 pp.


© Steklov Math. Inst. of RAS, 2025