RUS  ENG
Full version
JOURNALS // Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya

Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2014, Issue 7(118), Pages 60–69 (Mi vsgu427)

Integrable systems on tangent bundle of multi-dimensional sphere
N. V. Pokhodnya, M. V. Shamolin

References

1. Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 114:1 (2003), 919–975  crossref  mathscinet  zmath
2. Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 110:2 (2002), 2526–2555  crossref  mathscinet
3. Shamolin M. V., “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, Journal of Mathematical Sciences, 122:1 (2004), 2841–2915  crossref  mathscinet  zmath
4. Shamolin M. V., “Jacobi integrability of problem of four-dimensional body motion in a resisting medium”, Reports of RAS, 375:3 (2000), 343–346 (in Russian)  mathnet
5. Pokhodnya N. V., Shamolin M. V., “New case of integrability in dynamics of multi-dimensional body”, Vestnik of Samara State University. Natural Sciences Series, 2012, no. 9(100), 136–150 (in Russian)  mathnet
6. Pokhodnya N. V., Shamolin M. V., “Certain conditions of integrability of dynamical systems in transcendental functions”, Vestnik of Samara State University. Natural Sciences Series, 2013, no. 9/1(110), 35–41 (in Russian)  mathnet
7. Arnold V. I., Kozlov V. V., Neyshtadt A. I., Mathematical aspect in classical and celestial mechanics, VINITI, M., 1985, 304 pp. (in Russian)  mathscinet
8. Trofimov V. V., “Symplectic structures on symmetruc spaces automorphysm groups”, Bulletin of Moscow University, 1984, no. 6, 31–33 (in Russian)  mathnet  mathscinet
9. Shamolin M. V., “Variety of cases of integrability in dynamics of lower-, and multi-dimensional body in nonconservative field”, Results of science and technology. Series: Contemporary Mathematics and its Applications. Subjects Reviews. Dynamical Systems, 125, 2013, 5–254 (in Russian)  mathnet  mathscinet
10. Shamolin M. V., Methods of analysis of various dissipation dynamical systems in dynamics of a rigid body, Ekzamen, M., 2007, 352 pp. (in Russian)


© Steklov Math. Inst. of RAS, 2025