RUS  ENG
Full version
JOURNALS // Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya

Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2014, Issue 10(121), Pages 55–67 (Mi vsgu449)

Metric and topological freedom for sequential operator spaces
N. T. Nemesh, S. M. Shteiner

References

1. Lambert A., Operatorfolgenräume. Eine Kategorie auf dem Weg von den Banach-Räumen zu den Operatorräumen, Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften der Technisch-Naturwissenschaftlichen Fakultät I der Universität des Saarlandes, Saarbrücken, 2002
2. Effros E. G., Ruan Z.-J., Operator spaces, Clarendon Press, 2000  mathscinet  zmath
3. Paulsen V., Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 78, Cambridge University Press, Cambridge, 2002  mathscinet  zmath
4. Pisier G., Introduction to operator space theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003  mathscinet  zmath
5. Helemskii A. Ya., Lectures and exercises on functional analysis, Translations of Mathematical Monographs, 233, American mathematical society, Providence, RI, 2006  mathscinet  zmath
6. Rudin W., Functional analysis, McGraw-Hill, New York, 1973  mathscinet  zmath
7. Mac Lane S., Categories for the working mathematician, Springer-Verlag, Berlin, 1971  mathscinet  zmath
8. William L. F., Schanuel S. H., Conceptual Mathematics: A First Introduction to Categories, Cambridge University Press, Cambridge, 2009  mathscinet  zmath
9. Helemskii A. Ya., “Metric freeness and projectivity for classical and quantum normed modules”, Sbornik: Mathematics, 204:7 (2013), 1056  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
10. Shteiner S. M., “Topological freedom for classical and quantum notmed modules”, Vestnik of SamSU, 2013, no. 9/1 (110), 49–57 (in Russian)  mathnet  mathscinet  elib


© Steklov Math. Inst. of RAS, 2025