RUS  ENG
Full version
JOURNALS // Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya

Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2014, Issue 10(121), Pages 68–73 (Mi vsgu450)

Linearly ordered space whose square and higher powers cannot be condensed onto a normal space
O. I. Pavlov

References

1. Pavlov O., “Condensations of Cartesian products”, Comment. Math. Univ. Carolin., 40:2 (1999), 355–365  mathscinet  zmath
2. Malykhin D. V., “On condensations of topological spaces and products”, Fundamental physics and mathematics problems and modelling of technical and technological systems, 2, “Stankin”, M., 1998, 27–33 (in Russian)  mathscinet
3. Buzyakova R. Z., “On condensations of Cartesian Products onto normal spaces”, Vestnik of MSU, 51:1 (1996), 13–14 (in Russian)  mathnet
4. Yakivchik A. N., “On tightenings of a product of finally compact spaces”, Vestnik of MSU, 44:4 (1989), 86–88 (in Russian)  mathnet
5. Heath R. W., Lutzer D. J., Zenor P. L., “Monotonically normal spaces”, Trans. Amer. Math. Soc., 178 (1973), 481–493  crossref  mathscinet  zmath
6. Engelking R., General Topology, Mir, M., 1989 (in Russian)  mathscinet
7. Stephenson R. M., “k-Compact and related spaces”, Handbook of set-theoretic topology, eds. K. Kunen, J. Vaughan, North-Holland Publishing, Amsterdam, 1984, 603–632  crossref  mathscinet
8. Glicksberg I., “Stone–Cech compactifications of products”, Trans. Amer. Math. Soc., 90 (1959), 369–382  mathscinet  zmath
9. Dieudonne J., “Sur les espaces topologiques susceptibles d'etre munis d'une structure uniforme d'espace complet”, C. R. Acad. Sci. Paris, 209 (1939), 666–668  mathscinet
10. Przymusinski T. S., “Products of normal spaces”, Handbook of set-theoretic topology, eds. K. Kunen, J. Vaughan, North-Holland Publishing, Amsterdam, 1984, 781–826  crossref  mathscinet


© Steklov Math. Inst. of RAS, 2025