RUS  ENG
Full version
JOURNALS // Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya

Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2014, Issue 10(121), Pages 109–115 (Mi vsgu455)

Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase patterns
A. V. Andreev, M. V. Shamolin

References

1. Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 114:1 (2003), 919–975  crossref  mathscinet  zmath
2. Shamolin M. V., “Variety of cases of integrability in dynamics of lower-, and multi-dimensional body in nonconservative field”, Dynamical Systems, Summary of science and technology. Ser.: Contemporary Mathematics and its Applications. Subject reviews, 125, 2013, 5–254 (in Russian)  mathnet  mathscinet
3. Shamolin S. V., “New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium”, PAMM (Proc. Appl. Math. Mech.), 2009, no. 9, 139–140  crossref
4. Shamolin M. V., “Variety of types of phase portraits in the dynamics of a rigid body interacting with a resisting medium”, Proceedings of RAS, 349:2 (1996), 193–197 (in Russian)  mathnet  zmath
5. Shamolin M. V., “A new two-parameter family of phase portraits in the problem of a body motion in a medium”, Proceedings of RAS, 337:5 (1994), 611–614 (in Russian)  mathnet  zmath  isi
6. Shamolin M. V., “Dynamical systems with variable dissipation: approaches, methods, and applications”, Fundamental and Applied Mathematics, 14:3 (2008), 3–237 (in Russian)  mathnet  zmath  isi  elib
7. Arnold V. I., Kozlov V. V., Neyshtadt A. I., Mathematical aspects in classical and celestial mechanics, VINITI, M., 1985, 304 pp. (in Russian)
8. Trofimov V. V., “Symplectic structures on symmetruc spaces of automorphysm groups”, Vestnik of Moscow State University. Ser. 1. Mathematics. Mechanics, 1984, no. 6, 31–33 (in Russian)  mathnet  mathscinet
9. Trofimov V. V., Shamolin M. V., “Geometrical and dynamical invariants of integrable Hamiltonian and dissipative systems”, Fundamental and Applied Mathematics, 16:4 (2010), 3–229 (in Russian)  mathnet  isi  elib
10. Shamolin M. V., Methods of analysis of various dissipation dynamical systems in dynamics of a rigid body, Ekzamen, M., 2007, 352 pp. (in Russian)


© Steklov Math. Inst. of RAS, 2025