RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2020, том 16, выпуск 3, страницы 293–315 (Mi vspui459)

On practical application of Zubov's optimal damping concept
E. I. Veremey

Литература

1. E. D. Sontag, Mathematical control theory: Deterministic finite dimensional systems, 2nd ed., Springer Press, New York, 1998, 544 pp.  mathscinet  zmath
2. H. Khalil, Nonlinear systems, Prentice Hall Press, Englewood Cliffs, NJ, 2002, 766 pp.  zmath
3. J. Slotine, W. Li, Applied nonlinear control, Prentice Hall Press, Englewood Cliffs, NJ, 1991, 476 pp.  zmath
4. L. Lewis, D. L. Vrabie, V. L. Syrmos, Optimal control, John Wiley & Sons Press, Hoboken, NJ, 2012, 552 pp.  mathscinet  zmath
5. H. P. Geering, Optimal control with engineering applications, Springer-Verlag Press, Berlin–Heidelberg, 2007, 134 pp.  zmath
6. R. Sepulchre, V. Jankovic, P. Kokotovic, Constructive nonlinear control, Springer Press, New York, 1997, 324 pp.  mathscinet  zmath
7. T. I. Fossen, Guidance and control of ocean vehicles, John Wiley & Sons Press, New York, 1999, 480 pp.  mathscinet
8. K. Do, J. Pan, Control of ships, underwater vehicles. Design for underactuated and nonlinear marine systems, Springer-Verlag Press, London, 2009, 402 pp.
9. V. I. Zubov, Oscillations in nonlinear and controlled systems, Sudpromgiz Publ., L., 1962, 630 pp. (In Russian)  mathscinet  zmath
10. V. I. Zubov, Theory of optimal control of ships and other moving objects, Sudpromgiz Publ., L., 1966, 352 pp. (In Russian)
11. V. I. Zubov, Theorie de la Commande, Mir, M., 1978, 470 pp.  mathscinet  zmath
12. Z. Artstein, “Stabilization with relaxed controls”, Nonlinear Analysis, 7 (1983), 1163–1173  crossref  mathscinet  zmath
13. E. D. Sontag, “A Lyapunov-like characterization of asymptotic controllability”, SIAM Journal of Control and Optimization, 21 (1983), 462–471  crossref  mathscinet  zmath
14. R. A. Freeman, P. V. Kokotovic, “Inverse optimality in robust stabilization”, SIAM Journal of Control and Optimization, 34 (1966), 1365–1391  crossref  mathscinet
15. M. Almobaied, I. Eksin, M. Guzelkaya, “A new inverse optimal control method for discretetime systems”, Proceedings of 12th International Conference on Informatics in Control, Automation and Robotics, 2015, 275–280  crossref
16. W. Hahn, A. P. Baartz, Stability of motion, Springer Press, London, 1967, 446 pp.  mathscinet  zmath
17. V. Jurdjevic, J. P. Quinn, “Controllability and stability”, Journal of Differential Equations, 28:3 (1978), 381–389  crossref  mathscinet  zmath  adsnasa
18. N. Hudon, M. Guay, “Construction of control Lyapunov functions for damping stabilization of control affine systems”, Proceedings of 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference (Shanghai, China, 2009), 8008–8013
19. S. C. Beeler, H. T. Tran, H. T. Banks, “Feedback control methodologies for nonlinear systems”, Journal of Optimization Theory and Applications, 107:1 (2000), 1–33  crossref  mathscinet  zmath
20. A. Wernrud, A. Rantzer, “On approximate policy iteration for continuous-time systems”, Proceedings of 44th Conference on Decision and Control and European Control Conference (Seville, December 2005), 213–220  mathscinet  adsnasa
21. E. I. Veremey, “Special spectral approach to solutions of SISO LTI H-optimization problems”, Intern. Journal of Automation and Computing, 16:1 (2019), 112–128  crossref
22. M. V. Sotnikova, E. I. Veremey, “Dynamic positioning based on nonlinear MPC”, IFAC Proceedings Volumes (IFAC PapersOnline), 9:1 (2013), 31–36
23. E. I. Veremey, “Separate filtering correction of observer-based marine positioning control laws”, Intern. Journal of Control, 90:8 (2017), 1561–1575  crossref  mathscinet  zmath  adsnasa
24. E. I. Veremey, “Optimization of filtering correctors for autopilot control laws with special structures”, Optimal Control Applications and Methods, 37:2 (2016), 345–348  crossref  mathscinet


© МИАН, 2025