RUS  ENG
Full version
JOURNALS // Russian Universities Reports. Mathematics

Russian Universities Reports. Mathematics, 2021, Volume 26, Issue 133, Pages 35–43 (Mi vtamu214)

On an ill-posed boundary value problem for the Laplace equationin a circular cylinder
E. B. Laneev, D. Yu. Bykov, A. V. Zubarenko, O. N. Kulikova, D. A. Morozova, E. V. Shunin

References

1. E. B. Laneev, B. Vasudevan,, “On a stable solution of a mixed problem for the Laplace equation”, PFUR Reports. Series: Applied Mathematics and Computer Science, 1999, no. 1, 128–133 (In Russian)  mathscinet  zmath
2. E. B. Laneev, “O postroenii funktsii Karlemana na osnove metoda regulyarizatsii Tikhonova v nekorrektno postavlennoi zadache dlya uravneniya Laplasa”, Differentsialnye uravneniya, 54:4 (2018), 483–491  mathscinet  zmath
3. A. N. Tikhonov, V. YA. Arsenin, Metody Resheniya Nekorrektnyh Zadach, Nauka, M., 1979 (In Russian)
4. A. N. Tikhonov A.N., V. B. Glasko, O. K. Litvinenko, V. R. Melikhov, “O prodolzhenii potentsiala v storonu vozmushchayushchikh mass na osnove metoda regulyarizatsii”, Izv. AN SSSR. Fizika Zemli, 1968, no. 1, 30–48 (In Russian)
5. E. B. Laneev, M. N. Muratov,, “Ob odnoy obratnoy zadache k kraevoy zadache dlya uravneniya Laplasa s usloviem tret’ego roda na netochno zadannoy granitse”, PFUR Reports. Series: Mathematics, 10:1 (2003), 100–110 (In Russian)
6. G. R. Ivanitskii, “Thermovision in medicine”, Herald of the Russian Academy of Sciences, 76:1 (2006), 48–58 (In Russian)  mathscinet


© Steklov Math. Inst. of RAS, 2025