RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2015, том 25, выпуск 3, страницы 388–396 (Mi vuu493)

Certain class of harmonic multivalent functions
E. A. Eljamal, M. Darus

СПИСОК ЛИТЕРАТУРЫ

1. Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. AI. Math., 9 (1984), 3–25  crossref  mathscinet  zmath
2. Eljamal E. A., Darus M., “A subclass of harmonic univalent functions with varying arguments defined by generalized derivative operator”, Advance in Decision Sciences, 2012 (2012), Article ID 610406, 8 pp.  mathscinet  zmath
3. Eljamal E. A., Darus M., “Some properties of complex harmonic mapping”, ISRN Applied Mathematics, 2012 (2012), Article ID 587689, 6 pp.  crossref  mathscinet  zmath
4. Al-Shaqsi K., Darus M., “On certain class of harmonic univalent functions”, Int. J. Contemp. Math. Sci., 4:24 (2009), 1193–1207  mathscinet  zmath
5. Al-Shaqsi K., Darus M., “On harmonic univalent functions with respect to $k$-symmetric points”, Int. J. Contemp. Math. Sci., 3:3 (2008), 111–118  mathscinet  zmath
6. Al-Shaqsi K., Darus M., “On harmonic functions defined by derivative operator”, Journal of Inequalities and Applications, 2008 (2008), Article ID 263413, 10 pp. http://www.journalofinequalitiesandapplications.com/content/2008/1/263413  mathscinet
7. Darus M., Al-Shaqsi K., “On harmonic univalent functions defined by a generalised Ruscheweyh derivatives operator”, Lobachevskii Journal of Mathematics, 22 (2006), 19–26  mathnet  mathscinet  zmath
8. Al-Shaqsi K., Darus M., “On a subclass of certain harmonic meromorphic functions”, Far East Journal of Mathematical Sciences, 20:2 (2006), 207–218  mathscinet  zmath
9. Eljamal E. A., Darus M., “Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator”, Владикавказский математический журнал, 15:2 (2013), 27–34  mathnet  mathscinet [Eljamal E. A., Darus M., “Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator”, Vladikavkaz. Mat. Zh., 15:2 (2013), 27–34]
10. Salagean G. S., “Subclass of univalent functions”, Lecture Notes in Math., 1013, Springer-Verlag, Berlin–Heidelberg–New York, 1983, 362–372  crossref  mathscinet
11. Jahangiri J. M., Murugusundaramoorthy G., Vijaya K., “Salagean-type harmonic univalent functions”, Southwest J. Pure Appl. Math., 2002, no. 2, 77–82  mathscinet  zmath
12. Silverman H., “Harmonic univalent functions with negative coefficients”, J. Math. Anal. Appl., 220:1 (1998), 283–289  crossref  mathscinet  zmath  isi
13. Silverman H., Silvia E. M., “Subclasses of harmonic univalent functions”, New Zealand J. Math., 28:2 (1999), 275–284  mathscinet  zmath
14. Jahangiri J. M., “Harmonic functions starlike in the unit disk”, J. Math. Anal. Appl., 235:2 (1999), 470–477  crossref  mathscinet  zmath  isi
15. Ahuja O. P., Jahangiri J. M., “Multivalent harmonic starlike functions”, Ann. Univ. Mariae Curie-Sklodowska. Sect. A, 55 (2001), 1–13  mathscinet  zmath
16. Yasar E., Yalcin S., “Neighborhood of a new class of harmonic multivalent functions”, Computers and Mathematics with Applications, 62:1 (2011), 462–473  crossref  mathscinet  zmath  isi
17. Goodman A. W., “Univalent functions and non-analytic curves”, Proc. Amer. Math. Soc., 8:3 (1957), 598–601  crossref  mathscinet  zmath
18. Ruscheweyh S., “Neighborhoods of univalent functions”, Proc. Amer. Math. Soc., 81:4 (1981), 521–527  crossref  mathscinet  zmath  isi


© МИАН, 2025