|
|
|
СПИСОК ЛИТЕРАТУРЫ
|
|
|
1. |
Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. AI. Math., 9 (1984), 3–25 |
2. |
Eljamal E. A., Darus M., “A subclass of harmonic univalent functions with varying arguments defined by generalized derivative operator”, Advance in Decision Sciences, 2012 (2012), Article ID 610406, 8 pp. |
3. |
Eljamal E. A., Darus M., “Some properties of complex harmonic mapping”, ISRN Applied Mathematics, 2012 (2012), Article ID 587689, 6 pp. |
4. |
Al-Shaqsi K., Darus M., “On certain class of harmonic univalent functions”, Int. J. Contemp. Math. Sci., 4:24 (2009), 1193–1207 |
5. |
Al-Shaqsi K., Darus M., “On harmonic univalent functions with respect to $k$-symmetric points”, Int. J. Contemp. Math. Sci., 3:3 (2008), 111–118 |
6. |
Al-Shaqsi K., Darus M., “On harmonic functions defined by derivative operator”, Journal of Inequalities and Applications, 2008 (2008), Article ID 263413, 10 pp. http://www.journalofinequalitiesandapplications.com/content/2008/1/263413 |
7. |
Darus M., Al-Shaqsi K., “On harmonic univalent functions defined by a generalised Ruscheweyh derivatives operator”, Lobachevskii Journal of Mathematics, 22 (2006), 19–26 |
8. |
Al-Shaqsi K., Darus M., “On a subclass of certain harmonic meromorphic functions”, Far East Journal of Mathematical Sciences, 20:2 (2006), 207–218 |
9. |
Eljamal E. A., Darus M., “Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator”, Владикавказский математический журнал, 15:2 (2013), 27–34 [Eljamal E. A., Darus M., “Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator”, Vladikavkaz. Mat. Zh., 15:2 (2013), 27–34] |
10. |
Salagean G. S., “Subclass of univalent functions”, Lecture Notes in Math., 1013, Springer-Verlag, Berlin–Heidelberg–New York, 1983, 362–372 |
11. |
Jahangiri J. M., Murugusundaramoorthy G., Vijaya K., “Salagean-type harmonic univalent functions”, Southwest J. Pure Appl. Math., 2002, no. 2, 77–82 |
12. |
Silverman H., “Harmonic univalent functions with negative coefficients”, J. Math. Anal. Appl., 220:1 (1998), 283–289 |
13. |
Silverman H., Silvia E. M., “Subclasses of harmonic univalent functions”, New Zealand J. Math., 28:2 (1999), 275–284 |
14. |
Jahangiri J. M., “Harmonic functions starlike in the unit disk”, J. Math. Anal. Appl., 235:2 (1999), 470–477 |
15. |
Ahuja O. P., Jahangiri J. M., “Multivalent harmonic starlike functions”, Ann. Univ. Mariae Curie-Sklodowska. Sect. A, 55 (2001), 1–13 |
16. |
Yasar E., Yalcin S., “Neighborhood of a new class of harmonic multivalent functions”, Computers and Mathematics with Applications, 62:1 (2011), 462–473 |
17. |
Goodman A. W., “Univalent functions and non-analytic curves”, Proc. Amer. Math. Soc., 8:3 (1957), 598–601 |
18. |
Ruscheweyh S., “Neighborhoods of univalent functions”, Proc. Amer. Math. Soc., 81:4 (1981), 521–527 |