RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, Issue 1, Pages 61–96 (Mi vuu52)

Absolute continuity of the spectrum of multidimensional periodic magnetic Dirac operator
L. I. Danilov

References

1. Danilov L. I., “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Diraka”, Differents. uravneniya, 36:2 (2000), 233–240  mathnet  mathscinet  zmath
2. Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972  mathscinet  zmath
3. Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Garmonicheskii analiz. Samosopryazhennost, v. 2, Mir, M., 1978  mathscinet
4. Kuchment P., Levendorskii S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569  crossref  mathscinet  zmath  isi
5. Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40  mathnet  mathscinet  zmath
6. Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhaeuser Verlag, Basel, 1993  mathscinet  zmath
7. Danilov L. I., Spektr operatora Diraka s periodicheskim potentsialom. VI, Dep. v VINITI 31.12.96. № 3855-V96, Izhevsk, 45 pp.
8. Filonov N., Sobolev A. V., “Absence of the singular continuous component in the spectrum of analytic direct integrals”, Zap. nauch. semin. POMI, 318, 2004, 298–307  mathnet  mathscinet  zmath
9. Danilov L. I., O spektre operatora Diraka s periodicheskim potentsialom, Preprint FTI UrO AN SSSR, Sverdlovsk, 1987
10. Danilov L. I., “O spektre operatora Diraka v $\mathbb R^n$ s periodicheskim potentsialom”, Teor. i matem. fizika, 85:1 (1990), 41–53  mathnet  mathscinet
11. Danilov L. I., Spektr operatora Diraka s periodicheskim potentsialom. I, Dep. v VINITI 12.12.91.№ 4588-V91, Izhevsk, 35 pp.
12. Danilov L. I., “Ob otsutstvii sobstvennykh znachenii v spektre obobschennogo dvumernogo periodicheskogo operatora Diraka”, Algebra i analiz, 17:3 (2005), 47–80  mathnet  mathscinet
13. Danilov L. I., “Ob absolyutnoi nepreryvnosti spektra trekhmernogo periodicheskogo operatora Diraka”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2006, no. 1(35), 49–76  mathnet
14. Danilov L. I., “O spektre periodicheskogo operatora Diraka”, Teor. i matem. fizika, 124:1 (2000), 3–17  mathnet  mathscinet  zmath
15. Danilov L. I., Ob absolyutnoi nepreryvnosti spektra periodicheskikh operatorov Shredingera i Diraka. I, Dep. v VINITI 15.06.00. № 1683-V00, Izhevsk, 76 pp.
16. Birman M. Sh., Suslina T. A., “The periodic Dirac operator is absolutely continuous”, Integr. Equat. and Oper. Theory, 34 (1999), 377–395  crossref  mathscinet  zmath
17. Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravnenii s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:6 (1950), 1117–1120
18. Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Analiz operatorov, v. 4, Mir, M., 1982  mathscinet
19. Danilov L. I., “Otsenki rezolventy i spektr operatora Diraka s periodicheskim potentsialom”, Teor. i matem. fizika, 103:1 (1995), 3–22  mathnet  mathscinet  zmath
20. Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Commun. Math. Phys., 33 (1973), 335–343  crossref  mathscinet  adsnasa


© Steklov Math. Inst. of RAS, 2025