|
|
|
СПИСОК ЛИТЕРАТУРЫ
|
|
|
1. |
Kurzhanski A. B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkh{ä}user, Basel, 2014 |
2. |
Вдовин С. А., Тарасьев А. М., Ушаков В. Н., “Построение множества достижимости интегратора Брокетта”, Прикладная математика и механика, 68:5 (2004), 707–724 ; Vdovin S. A., Taras'yev A. M., Ushakov V. N., “Construction of the attainability set of a Brockett integrator”, Journal of Applied Mathematics and Mechanics, 68:5 (2004), 631–646 |
3. |
Пацко В. С., Пятко С. Г., Федотов А. А., “Трехмерное множество достижимости нелинейной управляемой системы”, Известия РАН. Теория и системы управления, 2003, № 3, 8–16 ; Patsko V. S., Pyatko S. G., Fedotov A. A., “Three-dimensional reachability set for a nonlinear control system”, Journal of Computer and Systems Sciences International, 42:3 (2003), 320–328 |
4. |
Горнов А. Ю., Вычислительные технологии решения задач оптимального управления, Наука, Новосибирск, 2009 [Gornov A. Yu., Computational technologies for solving optimal control problems, Nauka, Novosibirsk, 2009] |
5. |
Guseinov K. G., Ozer O., Akyar E., Ushakov V. N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Differential Equations and Applications, 14:1–2 (2007), 57–73 |
6. |
Filippova T. F., “Ellipsoidal estimates of reachable sets for control systems with nonlinear terms”, IFAC-PapersOnLine, 50:1 (2017), 15355–15360 |
7. |
Polyak B. T., “Сonvexity of the reachable set of nonlinear systems under L2 bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems. Ser. A: Mathematical Analysis, 11 (2004), 255–267 |
8. |
Поляк Б. Т., “Локальное программирование”, Ж. вычисл. матем. и матем. физ., 41:9 (2001), 1324–1331 ; Polyak B. T., “Local programming”, Comput. Math. Math. Phys., 41:9 (2001), 1259–1266 |
9. |
Gusev M. I., “On convexity of reachable sets of a nonlinear system under integral constraints”, IFAC-PapersOnLine, 51:32 (2018), 207–212 |
10. |
Гусев М. И., Осипов И. О., “Асимптотическое поведение множеств достижимости на малых временных промежутках”, Труды Института математики и механики УрО РАН, 25, № 3, 2019, 86–99 ; Gusev M. I., Osipov I. O., “Asymptotic behavior of reachable sets on small time intervals”, Proceedings of the Steklov Institute of Mathematics, 309, suppl. 1 (2020), 52–64 |
11. |
Goncharova E., Ovseevich A., “Small-time reachable sets of linear systems with integral control constraints: birth of the shape of a reachable set”, Journal of Optimization Theory and Applications, 168:2 (2016), 615–624 |
12. |
Gusev M. I., “The limits of applicability of the linearization method in calculating small-time reachable sets”, Ural Mathematical Journal, 6:1 (2020), 71–83 |
13. |
Gusev M. I., “Estimates of the minimal eigenvalue of the controllability Gramian for a system containing a small parameter”, Mathematical Optimization Theory and Operations Research, Springer, Cham, 2019, 461–473 |
14. |
Cockayne E. J., Hall G. W. C., “Plane motion of a particle subject to curvature constraints”, SIAM Journal on Control, 13:1 (1975), 197–220 |
15. |
Пацко В. С., Федотов А. А., “Множество достижимости в момент для машины Дубинса в случае одностороннего поворота”, Труды Института математики и механики УрО РАН, 24, № 1, 2018, 143–155 [Patsko V. S., Fedotov A. A., “Attainability set at instant for one-side turning Dubins car”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 1, 2018, 143–155 (in Russian) ] |
16. |
Зыков И. В., Осипов И. О., Программа для построения методом Монте-Карло множеств достижимости нелинейных систем с интегральными ограничениями на управление, свидетельство о государственной регистрации программы для ЭВМ № 2020661557, 2020 [Zykov I. V., Osipov I. O., A program for constructing the reachable sets of nonlinear systems with integral control constraints by the Monte Carlo method, certificate of state registration of a computer program № 2020661557, 2020] |
17. |
Zykov I. V., “An algorithm for constructing reachable sets for systems with multiple integral constraints”, Mathematical Analysis With Applications, Springer, Cham, 2020, 51–60 |