|
|
|
References
|
|
|
1. |
de Faria E., de Melo W., “Rigidity of critical circle mappings. I”, Journal of the European Mathematical Society, 1:4 (1999), 339–392 |
2. |
Ostlund R., Rand D., Sethna J., Siggia E., “Universal properties of the transition from quasi-periodicity to chaos in dissipative systems”, Physica D: Nonlinear Phenomena, 8:3 (1983), 303–342 |
3. |
Lanford O. E., III, de la Llave R., Solution of the functional equation for critical circle mappings with golden rotation number, Manuscript, 1984 |
4. |
Epstein H., “Fixed points of composition operators. II”, Nonlinearity, 2:2 (1989), 305–310 |
5. |
de Melo W., van Strien S., One-dimensional dynamics, Springer, Berlin, 1993 |
6. |
Mestel B., A computer assisted proof of universality for Cubic critical maps of the circle with Golden mean rotation number, PhD thesis, University of Warwick, 1984 |
7. |
Lanford O. E., III, “Functional equations for circle homeomorphisms with golden ratio rotation number”, Journal of Statistical Physics, 34:1–2 (1984), 57–73 |
8. |
Yoccoz J.-Ch., “Il n'y a pas de contre-exemple de Denjoy analytique”, Comptes Rendus de l'Académie des Sciences. Série I Mathématique, 298:7 (1984), 141–144 |
9. |
Graczyk J., Światek G., “Singular measures in circle dynamics”, Communications in Mathematical Physics, 157:2 (1993), 213–230 |
10. |
Guarino P., Martens M., de Melo W., “Rigidity of critical circle maps”, Duke Mathematical Journal, 167:11 (2018), 2125–2188 |
11. |
Coelho Z., de Faria E., “Limit laws of entrance times for homeomorphisms of the circle”, Israel Journal of Mathematics, 93:1 (1996), 93–112 |
12. |
Coelho Z., “The loss of tightness of time distributions for homeomorphisms of the circle”, Transactions of the American Mathematical Society, 356:11 (2004), 4427–4445 |
13. |
Kim D. H., Seo B. K., “The waiting time for irrational rotations”, Nonlinearity, 16:5 (2003), 1861–1868 |
14. |
Katznelson Y., Ornstein D., “The absolute continuity of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory and Dynamical Systems, 9:4 (1989), 681–690 |
15. |
Pitskel B., “Poisson limit law for Markov chains”, Ergodic Theory and Dynamical Systems, 11:3 (1991), 501–513 |
16. |
Bowen R. E., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin, 2008 |
17. |
Collet P., Galves A., “Asymptotic distribution of entrance times for expanding maps of the interval”, Dynamical Systems and Applications, World Scientific, 1995, 139–152 |
18. |
Vul E. B., Sinai Ya. G., Khanin K. M., “Feigenbaum universality and the thermodynamic formalism”, Russian Mathematical Surveys, 39:3 (1984), 1–40 |
19. |
Dzhalilov A. A., “Thermodynamic formalism and singular invariant measures for critical circle maps”, Theoretical and Mathematical Physics, 134:2 (2003), 166–180 |
20. |
Ruelle D., Thermodynamic formalism. The mathematical structure of equilibrium statistical mechanics, Cambridge University Press, Cambridge, 2004 |
21. |
Dzhalilov A. A., “Limiting laws for entrance times of critical mappings of a circle”, Theoretical and Mathematical Physics, 138:2 (2004), 190–207 |