RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2021, Volume 31, Issue 3, Pages 365–383 (Mi vuu775)

Asymptotic distribution of hitting times for critical maps of the circle
Sh. A. Ayupov, A. A. Zhalilov

References

1. de Faria E., de Melo W., “Rigidity of critical circle mappings. I”, Journal of the European Mathematical Society, 1:4 (1999), 339–392  crossref  zmath
2. Ostlund R., Rand D., Sethna J., Siggia E., “Universal properties of the transition from quasi-periodicity to chaos in dissipative systems”, Physica D: Nonlinear Phenomena, 8:3 (1983), 303–342  crossref  zmath  adsnasa  scopus
3. Lanford O. E., III, de la Llave R., Solution of the functional equation for critical circle mappings with golden rotation number, Manuscript, 1984
4. Epstein H., “Fixed points of composition operators. II”, Nonlinearity, 2:2 (1989), 305–310  crossref  zmath  adsnasa  scopus
5. de Melo W., van Strien S., One-dimensional dynamics, Springer, Berlin, 1993  crossref  zmath
6. Mestel B., A computer assisted proof of universality for Cubic critical maps of the circle with Golden mean rotation number, PhD thesis, University of Warwick, 1984
7. Lanford O. E., III, “Functional equations for circle homeomorphisms with golden ratio rotation number”, Journal of Statistical Physics, 34:1–2 (1984), 57–73  crossref  adsnasa  scopus
8. Yoccoz J.-Ch., “Il n'y a pas de contre-exemple de Denjoy analytique”, Comptes Rendus de l'Académie des Sciences. Série I Mathématique, 298:7 (1984), 141–144  zmath
9. Graczyk J., Światek G., “Singular measures in circle dynamics”, Communications in Mathematical Physics, 157:2 (1993), 213–230  crossref  zmath  adsnasa  scopus
10. Guarino P., Martens M., de Melo W., “Rigidity of critical circle maps”, Duke Mathematical Journal, 167:11 (2018), 2125–2188  crossref  zmath  scopus
11. Coelho Z., de Faria E., “Limit laws of entrance times for homeomorphisms of the circle”, Israel Journal of Mathematics, 93:1 (1996), 93–112  crossref  zmath  scopus
12. Coelho Z., “The loss of tightness of time distributions for homeomorphisms of the circle”, Transactions of the American Mathematical Society, 356:11 (2004), 4427–4445  crossref  zmath  scopus
13. Kim D. H., Seo B. K., “The waiting time for irrational rotations”, Nonlinearity, 16:5 (2003), 1861–1868  crossref  zmath  adsnasa  scopus
14. Katznelson Y., Ornstein D., “The absolute continuity of the conjugation of certain diffeomorphisms of the circle”, Ergodic Theory and Dynamical Systems, 9:4 (1989), 681–690  crossref  scopus
15. Pitskel B., “Poisson limit law for Markov chains”, Ergodic Theory and Dynamical Systems, 11:3 (1991), 501–513  crossref  zmath  scopus
16. Bowen R. E., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin, 2008  crossref  zmath
17. Collet P., Galves A., “Asymptotic distribution of entrance times for expanding maps of the interval”, Dynamical Systems and Applications, World Scientific, 1995, 139–152  crossref  zmath
18. Vul E. B., Sinai Ya. G., Khanin K. M., “Feigenbaum universality and the thermodynamic formalism”, Russian Mathematical Surveys, 39:3 (1984), 1–40  mathnet  crossref  zmath  adsnasa  scopus
19. Dzhalilov A. A., “Thermodynamic formalism and singular invariant measures for critical circle maps”, Theoretical and Mathematical Physics, 134:2 (2003), 166–180  mathnet  crossref  zmath  scopus
20. Ruelle D., Thermodynamic formalism. The mathematical structure of equilibrium statistical mechanics, Cambridge University Press, Cambridge, 2004  crossref  adsnasa
21. Dzhalilov A. A., “Limiting laws for entrance times of critical mappings of a circle”, Theoretical and Mathematical Physics, 138:2 (2004), 190–207  mathnet  crossref  zmath  adsnasa  scopus


© Steklov Math. Inst. of RAS, 2025