RUS  ENG
Full version
JOURNALS // Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie

Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, Issue 10, Pages 82–89 (Mi vyuru188)

Parallel implementation of prediction algorithm in gradient boosting trees method
P. N. Druzhkov, N. Yu. Zolotykh, A. N. Polovinkin

References

1. L. Breiman, “Random Forests”, Machine Learning, 45:1 (2001), 5–32  crossref  zmath  isi
2. L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees, Wadsworth, 1983  mathscinet
3. L. Breiman, “Bagging predictors”, Machine Learning, 26:2 (1996), 123–140
4. M. Enzweiler, D. M. Gavrila, “Monocular Pedestrian Detection: Survey and Experiments”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31:12 (2009), 2179–2195  crossref  isi
5. Y. Freund, R. Schapire, “Experiments with a New Boosting Algorithm”, Machine Learning, Proceedings of the Thirteenth International Conference, Morgan Kauffman, San Francisco, 1996, 148–156
6. J. H. Friedman, Greedy Function Approximation: a Gradient Boosting Machine, Technical report, Dept. of Statistics, Stanford University, 1999
7. J. H. Friedman, Stochastic Gradient Boosting, Technical report, Dept. of Statistics, Stanford University, 1999
8. P. Geurts, D. Ernst, L. Wehenkel, “Extremely Randomized Trees”, Machine Learning, 36:1 (2006), 3–42  crossref  mathscinet  isi
9. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer-Verlag, 2008  mathscinet
10. Intel Threading Building Blocks http://www.threadingbuildingblocks.org (data obrascheniya: 07.12.2010)
11. OpenCV Wiki http://opencv.willowgarage.com/wiki (data obrascheniya: 07.12.2010)
12. UCI Machine Learning Repository http://archive.ics.uci.edu/ml (data obrascheniya: 07.12.2010)
13. Vapnik V., Estimation of dependences based on empirical data, Springer, 1981


© Steklov Math. Inst. of RAS, 2025