RUS  ENG
Full version
JOURNALS // Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie

Vestnik YuUrGU. Ser. Mat. Model. Progr., 2017, Volume 10, Issue 1, Pages 138–148 (Mi vyuru363)

Mathematical modelling of hereditarity Airy oscillator with friction
R. I. Parovik

References

1. V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, v. I, Background and Theory, Higher Education Press, Beijing; Springer-Verlag, Berlin, 2013, 373 pp.  crossref  mathscinet  zmath
2. Volterra V., Theory of Functionals and of Integral and Integro-Differential Equations, Dover, N.Y., 1959, 304 pp.  mathscinet  zmath
3. G. B. Airy, “On the Intensity of Light in the Neighbourhood of a Caustic”, Transactions of the Cambridge Philosophical Society, 6 (1838), 379–402
4. Honina S. N., Volotovskij S. G., “Mirror Laser Airy Beams”, Computer Optics, 34:2 (2014), 203–213 (in Russian)  isi
5. K. B. Oldham, J. Spanier, The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, London, 1974, 240 pp.  mathscinet  zmath
6. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differntial Equations, A Wiley-Interscience Publication, N.-Y., 1993, 384 pp.  mathscinet
7. Parovik R. I., Mathematical Modelling of Linear Oscillators Hereditarity, Kamchatskiy Gosudarstvennyy Universitet Imeni Vitusa Beringa, Petropavlovsk-Kamchatskiy, 2015, 178 pp.
8. Parovik R. I., “Cauchy Problem of Generalized Airy Equation”, Reports Adyghe (Circassian) International Academy of Sciences, 16:3 (2014), 64–69 (in Russian)  isi
9. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp.  crossref  mathscinet  zmath
10. F. Mainardi, “Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena”, Chaos, Solitons & Fractals, 7:9 (1996), 1461–1477  crossref  mathscinet  zmath  isi
11. Afanas'ev V. V., Danilaev M. P., Pol'skij Yu. E., “Stabilization of Fractal Oscillator Inertial Effects”, Technical Physics Letters, 36:7 (2010), 1–6 (in Russian)  isi  elib
12. I. Petras, Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Higher Education Press, Beijing; Springer-Verlag, Berlin, 2011, 218 pp.  crossref  zmath
13. M. S. Tavazoei, M. Haeri, “Chaotic Attractors in Incommensurate Fractional Order Systems”, Physica D: Nonlinear Phenomena, 237:20 (2008), 2628–2637  crossref  mathscinet  zmath  isi
14. Y. A. Rossikhin, M. V. Shitikova, “Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results”, Applied Mechanics Reviews, 63:1 (2010), 010801  crossref  isi
15. Samarskij A. A., Gulin A. V., The Stability of Difference Schemes, Nauka, M., 1973, 415 pp.
16. Parovik R. I., “Numerical Analysis Some Oscillation Equations with Fractional Order Derivatives”, Bulletin KRASEC. Physical and Mathematical Sciences, 9:2 (2014), 34–38  mathnet  crossref  isi
17. Y. Xu, V. Suat Ertürk, “A Finite Difference Technique for Solving Variable-Order Fractional Integro-Differential Equations”, Bulletin of the Iranian Mathematical Society, 40:3 (2014), 699–712  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025