|
|
|
Литература
|
|
|
1. |
L. Beghin, Ya. Nikitin, E. Orsingher, Exact small ball constants for some Gaussian processes under
the $L^2-$norm, Technical Report № 4. Dept. of Statistics, Probability and
Applied Statistics, Rome University “La Sapienza”, January 2002 |
2. |
X. Chen, W. V. Li, “Quadratic functionals and small ball probabilities for the $m$-fold
integrated Brownian motion”, Ann.Probab., 31 (2003), 1052–1077 |
3. |
C. Donati-Martin, M. Yor, “Fubini's theorem for double Wiener integrals and the variance of the
Brownian path”, Ann. Inst. H. Poincaré, 27 (1991), 181–200 |
4. |
R. M. Dudley, “On the lower tails of Gaussian seminorms”, Ann. Prob., 7:2 (1979), 319–342 |
5. |
T. Dunker, M. A. Lifshits, W. Linde, “Small deviations of sums of independent variables”, Proc. Conf. High Dimensional Probability, Ser. Progress in Probability, 43, Birkhäuser, 1998, 59–74 |
6. |
F. Gao, J. Hannig, T.-Y. Lee, F. Torcaso, “Laplace transforms via Hadamard Factorization with applications to small
Ball probabilities”, Electronic J. of Probability, 8 (2003), 13 |
7. |
F. Gao, J. Hannig, T.-Y. Lee, F. Torcaso, “Exact $L^2$ small balls of Gaussian processes”, J. Theor.Probab. (to appear) |
8. |
F. Gao, J. Hannig, F. Torcaso, “Integrated Brownian motions and exact $L_2$-small balls”, Ann.Prob., 31:3 (2003), 1320–1337 |
9. |
I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, sums, series and products, 5th ed., Nauka, Moscow, 1971 |
10. |
N. Henze, Ya. Yu. Nikitin, “A new approach to goodness-of-fit testing based on the integrated
empirical process”, Journ. Nonpar. Statist., 12 (2000), 391–416 |
11. |
N. Henze, Ya. Yu. Nikitin, “Watson-type goodness-of-fit tests based on the integrated empirical
process”, Math. Meth. Stat., 11 (2002), 183–202 |
12. |
I. A. Ibragimov, “On the probability that a Gaussian vector with values in a Hilbert
space hits a sphere of small radius”, J. Sov. Math., 20 (1982), 2164–2174 |
13. |
M. Kac, “On deviations between theoretical and empirical distribution”, Proc. Nat. Acad. Sci. USA, 35 (1949), 252–257 |
14. |
E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, 7-nd ed., Akademische Verlagsges. Geest and Portig, 1961 |
15. |
D. Khoshnevisan, Z. Shi, “Chung's law for integrated Brownian motion”, Trans. Amer. Math. Soc., 350:10 (1998), 4253–4264 |
16. |
A. Lachal, “Study of some new integrated statistics: computation of Bahadur
efficiency, relation with non-standard boundary value problems”, Mathematical Methods of Statistics, 10:1 (2001), 73–104 |
17. |
W. V. Li, “Comparison results for the lower tail of Gaussian seminorms”, Journ. Theor. Prob., 5:1 (1992), 1–31 |
18. |
W. V. Li, Q. M. Shao, “Gaussian processes: Inequalities, Small Ball Probabilities and
Applications”, Stochastic Processes: Theory and Methods, Handbook of Statistics, 19, eds. C. R. Rao, D. Shanbhag, 2001, 533–597 |
19. |
M. A. Lifshits, Gaussian Random Functions, Kluwer, 1995 |
20. |
M. A. Lifshits, “Asymptotic behavior of small ball probabilities”, Prob. Theory and Math. Stat., eds. B.Grigelionis et al., VSP/TEV, 1999, 453–468 |
21. |
A. I. Nazarov, Ya. Yu. Nikitin, Exact small ball behavior of integrated Gaussian processes under
$L_2-$norm and spectral asymptotics of boundary value problems, Preprint. Studi Statistici № 70. Istituto di Metodi
Quantitativi, Universita Bocconi, Milan, Febbraio, 2003 |
22. |
A. I. Nazarov, “On the sharp constant in the small ball asymptotics of some Gaussian
processes under $L_2$-norm”, Nonlinear equations and mathematical analysis, Problems of Math. Anal., 26, T. Rozhkovskaya, Novosibirsk, 2003, 179–214 |
23. |
G. R. Shorack, J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, New York, 1986 |
24. |
G. N. Sytaya, “On some asymptotic representations of the Gaussian measure in
a Hilbert space”, Theory of Stochastic Processes, 2, 1974, 93–104 |
25. |
G. S. Watson, “Goodness-of-fit tests on a circle”, Biometrika, 48 (1961), 109–114 |
26. |
E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1996 |
27. |
V. M. Zolotarev, “Asymptotic behavior of Gaussian measure in $l_2$”, Journ. Soviet Math., 24 (1986), 2330–2334 |