RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2003, Volume 296, Pages 139–168 (Mi znsl1246)

Methods for solving spectral problems for multiparameter matrix pencils
V. B. Khazanov

References

1. V. N. Kublanovskaya, “Metody i algoritmy resheniya spektralnykh zadach dlya polinomialnykh i ratsionalnykh matrits”, Zap. nauchn. semin. POMI, 238, 1997, 3–330  mathnet  mathnet
2. V. B. Khazanov, “Metody resheniya mnogoparametricheskikh zadach”, Algorithms 89, Proc. 10th Simp. Algorithms, Bratislava, 1989, 46–48
3. V. B. Khazanov, “O spektralnykh svoistvakh mnogoparametricheskikh polinomialnykh matrits”, Zap. nauchn. semin. POMI, 229, 1995, 284–321  mathnet  mathscinet
4. V. B. Khazanov, “O sobstvennykh porozhdayuschikh vektorakh mnogoparametricheskoi polinomialnoi matritsy”, Zap. nauchn. semin. POMI, 248, 1998, 165–186  mathnet  mathscinet  zmath
5. V. B. Khazanov, “O nekotorykh svoistvakh polinomialnykh bazisov nad polem ratsionalnykh funktsii mnogikh peremennykh”, Zap. nauchn. semin. POMI, 284, 2002, 177–191  mathnet  mathscinet  zmath
6. E. K. Blum, A. F. Chang, “A numerical methods for the solution of the double eigenvalue problems”, J. Inst. Math. Appl., 22:1 (1978), 29–42  crossref  mathscinet  zmath
7. E. K. Blum, A. R. Curtis, “A convergent gradient method for matrix eigenvector-eigenvalue problems”, Numer. Math., 31:3 (1978), 247–263  crossref  mathscinet  zmath
8. E. K. Blum, G. H. Rodrigue, “Solutions of eigenvalue problems in Hilbert spaces by a gradient method”, J. Comput. System Sci., 2 (1974), 220–237  crossref  mathscinet
9. A. Cuit, Pade approximats for operators: Theory and applications, Lect. Notes Math., 1065, 1984
10. G. Peters, J. H. Wilkinson, “Inverse iteration, ill-conditional equations and Newton's method”, SIAM Reviev, 21:3 (1979), 339–360  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025