RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2007, Volume 341, Pages 68–80 (Mi znsl134)

Limit correlation functions at zero for fixed trace random matrix ensembles
F. Götze, M. I. Gordin, A. Levina

References

1. G. Akemann, G. M. Cicuta, L. Molinari, and G. Vernizzi, “Compact support probability distributions in random matrix theory”, Phys. Rev. E (3), 59:2 (1999), 489–1497, part A  crossref  mathscinet
2. G. Akemann and G. Vernizzi, “Macroscopic and microscopic (non-)universality of compact support random matrix theory”, Nuclear Phys. B, 583:3 (2000), 739–757  crossref  mathscinet  zmath  adsnasa
3. F. Götze and M. Gordin, Limit correlation functions for Hilbert–Schmidt random matrix ensembles, University of Bielefeld. SFB 701. Preprint № 06-042, 2006
4. K. Johansson, “Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices”, Comm. Math. Phys., 215:3 (2001), 683–705  crossref  mathscinet  zmath  adsnasa
5. M. L. Mehta, Random matrices, Academic Press Inc., Boston, MA, 1991  mathscinet  zmath
6. V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972  mathscinet
7. N. Rosenzweig, “Statistical mechanics of equally likely quantum systems”, Statistical Physics (Brandeis Summer Institute, 1962, Vol. 3), W. A. Benjamin, NY, 1963, 91–158  mathscinet  adsnasa
8. A. B. Soshnikov, “Determinantnye tochechnye sluchainye polya”, Uspekhi mat. nauk, 55:5(335) (2000), 107–160  mathnet  mathscinet  zmath
9. C. A. Tracy and H. Widom, “Correlation functions, cluster functions, and spacing distributions for random matrices”, J. Statist. Phys., 92:5–6 (1998), 809–835  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025