RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2008, Volume 358, Pages 5–22 (Mi znsl2142)

Complexity of the identity checking problem for finite semigroups
J. Almeida, M. V. Volkov, S. V. Gol'dberg

References

1. M. Geri, D. Dzhonson, Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982  mathscinet
2. M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972  mathscinet  zmath
3. R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980  mathscinet
4. S. V. Plescheva, V. Verteshi, “Slozhnost zadachi proverki tozhdestv v 0-prostoi polugruppe”, Izv. Ural. gos. un-ta, 2006, no. 43, Kompyuternye nauki informatsionnye tekhnologii, Vyp. 1, 72–102
5. E. P. Simelgor, “Tozhdestva v konechnoi simmetricheskoi polugruppe”, Sovremen. algebra, 1974, no. 1, 174–188  mathscinet
6. J. Almeida, S. V. Plescheva, M. V. Volkov, “An application of group generic implicit operators to the complexity of identity checking in finite semigroups”, Mezhdunar. algebraich. konf., posvyaschennaya stoletiyu so dnya rozhdeniya P. G. Kontorovicha i 70-letiyu L. N. Shevrina, Tez. dokl., Izd-vo Ural. un-ta, Ekaterinburg, 2005, 16–17
7. J. Almeida, M. V. Volkov, “Subword complexity of profinite words and subgroups of free profinite semigroups”, Int. J. Algebra and Computation, 16:2 (2006), 221–258  crossref  mathscinet  zmath
8. C. Bergman, G. Slutzki, “Complexity of some problems concerning varieties and quasi-varieties of algebras”, SIAM J. Comput., 30:2 (2000), 359–382  crossref  mathscinet  zmath
9. S. Burris, J. Lawrence, “The equivalence problem for finite rings”, J. Symbolic Computation, 15:1 (1993), 67–71  crossref  mathscinet  zmath
10. S. Burris, J. Lawrence, “Results on the equivalence problem for finite groups”, Algebra Universalis, 52:4 (2005), 495–500  crossref  mathscinet
11. C. C. Edmunds, “On certain finitely based varieties of semigroups”, Semigroup Forum, 15:1 (1977), 21–39  crossref  mathscinet  zmath
12. G. Horváth, J. Lawrence, L. Mérai, Cs. Szabó, “The complexity of the equivalence problem for nonsolvable groups”, Bull. London Math. Soc., 39:3 (2007), 433–438  crossref  mathscinet  zmath
13. G. Horváth, Cs. Szabó, “The complexity of checking identities over finite groups”, Int. J. Algebra and Computation, 16:5 (2006), 931–939  crossref  mathscinet  zmath
14. H. B. Hunt III, R. E. Stearns, “The complexity of equivalence for commutative rings”, J. Symbolic Computation, 10:5 (1990), 411–436  crossref  mathscinet  zmath
15. M. Jackson, R. McKenzie, “Interpreting graph colorability in finite semigroups”, Int. J. Algebra and Computation, 16:1 (2006), 119–140  crossref  mathscinet  zmath
16. J. Kalicki, “On comparison of finite algebras”, Proc. Amer. Math. Soc., 3:1 (1952), 36–40  crossref  mathscinet  zmath
17. O. G. Kharlampovich, M. V. Sapir, “Algorithmic problems in varieties”, Int. J. Algebra and Computation, 5:4–5 (1995), 379–602  crossref  mathscinet  zmath
18. A. Kisielewicz, “Complexity of semigroup identity checking”, Int. J. Algebra and Computation, 14:4 (2004), 455–464  crossref  mathscinet  zmath
19. O. Klíma, “Complexity issues of checking identities in finite monoids”, Semigroup Forum (to appear)  mathscinet
20. M. Kozik, On Some Complexity Problems in Finite Algebras, PhD Dissertation, Vanderbilt University, Nashville, 2004  mathscinet
21. M. Kozik, “Computationally and algebraically complex finite algebra membership problems”, Int. J. Algebra and Computation, 17:8 (2007), 1635–1666  crossref  mathscinet  zmath
22. M. Kozik, “Varietal membership problem is 2-EXPTIME complete” (to appear)
23. C. H. Papadimitriou, Computational Complexity, Addison-Wesley Publishing Company, Reading–Menlo Park–New York, 1994  mathscinet  zmath
24. J.-E. Pin, Varieties of Formal Languages, North Oxford Academic, Oxford; Plenum, New York, 1986  mathscinet
25. S. Seif, “The Perkins semigroup has co-NP-complete term-equivalence problem”, Int. J. Algebra and Computation, 15:2 (2005), 317–326  crossref  mathscinet  zmath  adsnasa
26. S. Seif, Cs. Szabó, “Computational complexity of checking identities in 0-simple semigroups and matrix semigroups over finite fields”, Semigroup Forum, 72:2 (2006), 207–222  crossref  mathscinet  zmath
27. Cs. Szabó, V. Vértesi, “The complexity of the word-problem for finite matrix rings”, Proc. Amer. Math. Soc., 132:12 (2004), 3689–3695  crossref  mathscinet  zmath
28. Cs. Szabó, V. Vértesi, “The complexity of checking identities for finite matrix rings”, Algebra Universalis, 51:4 (2004), 439–445  crossref  mathscinet  zmath
29. Cs. Szabó, V. Vértesi, “The identity checking problem in finite rings” (to appear)
30. Z. Székely, “Computational complexity of the finite algebra membership problem for varieties”, Int. J. Algebra and Computation, 12:6 (2002), 811–823  crossref  mathscinet  zmath
31. P. Tesson, Computational Complexity Questions Related to Finite Monoids and Semigroups, PhD Thesis, McGill University, Montréal, 2003


© Steklov Math. Inst. of RAS, 2025