RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2008, Volume 360, Pages 162–179 (Mi znsl2164)

The five-vertex model and boxed plane partitions
V. S. Kapitonov, A. G. Pronko

References

1. G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing, 1976  mathscinet  zmath
2. D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999  mathscinet  zmath
3. B. Lindstrom, “On the vector representations of induced matroids”, Bull. London Math. Soc., 5 (1973), 85–90  crossref  mathscinet
4. I. M. Gessel, X. Viennot, “Binomial determinants, paths, and hook length formulae”, Adv. Math., 58 (1985), 300–321  crossref  mathscinet  zmath
5. K. Johansson, “Nonitersecting paths, random tilings and random matrices”, Probab. Theory Rel. Fields, 123 (2002), 225–280  crossref  mathscinet  zmath
6. H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165  mathscinet  zmath
7. M. Fulmek, C. Krattenthaler, “The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis. I”, Ann. Combin., 2 (1998), 19–40  crossref  mathscinet; arXiv: math/9712244  mathscinet
8. M. Fulmek, C. Krattenthaler, “The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis. II”, Europ. J. Combin., 21 (2000), 601–640  crossref  mathscinet  zmath; arXiv: math/9909038  mathscinet
9. C. Krattenthaler, “A (conjectural) $1/3$-phenomenon for the number of rhombus tilings of a hexagon which contain a fixed rhombus”, Number Theory and Discrete Mathematics, eds. A. K. Agarwal et al., Hindustan Book Agency, New Delhi, 2002, 13–30  mathscinet; arXiv: math/0101009
10. M. Ciucu, C. Krattenthaler, A factorization theorem for classical group characters, with applications to plane partitions and rhombus tilings, arXiv: 0812.1251  mathscinet
11. A. Okounkov, N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 581–603  crossref  mathscinet  zmath
12. P. L. Ferrari, H. Spohn, “Step fluctuations for a faceted crystal”, J. Stat. Phys., 113 (2003), 1–46  crossref  mathscinet  zmath
13. A. Okounkov, N. Reshetikhin, Random skew plane partitions and the Pearcey process, arXiv: math/0503508  mathscinet
14. R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers equation, arXiv: math-ph/0507007  mathscinet
15. R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. Math., 163:3 (2006), 1019–1056  crossref  mathscinet  zmath
16. G. Kuperberg, “Another proof of the alternative-sign matrix conjecture”, Int. Math. Res. Not., 1996:3 (1996), 139–150  crossref  mathscinet  zmath
17. D. Zeilberger, “Proof of the refined alternating sign matrix conjecture”, New York J. Math., 2 (1996), 59–68  mathscinet  zmath; arXiv: math/9606224  mathscinet
18. G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv: math/0008184  mathscinet
19. A. V. Razumov, Yu. G. Stroganov, “Bethe roots and refined enumeration of alternating-sign matrices”, J. Stat. Mech., 2006, P07004  crossref  mathscinet; arXiv: math-ph/0605004
20. F. Colomo, A. G. Pronko, The limit shape of large alternating-sign matrices, arXiv: math-ph/0803.2697  mathscinet
21. N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415–9430  crossref  mathscinet  zmath  adsnasa; arXiv: cond-mat/0503748  mathscinet
22. N. V. Tsilevich, “Kvantovyi metod obratnoi zadachi dlya $q$-bozonnoi modeli i simmetricheskie funktsii”, Funkts. analiz i ego pril., 40:3 (2006), 53–65  mathnet  mathscinet  zmath
23. N. M. Bogolyubov, “Chetyrekhvershinnaya model i sluchainye ukladki”, Teor. mat. fiz., 155:1 (2008), 25–38  mathnet  mathscinet
24. N. M. Bogolyubov, Pyativershinnaya model s fiksirovannymi granichnymi usloviyami, Preprint 4/2008, POMI
25. C. Destri, H. J. de Vega, “Light-cone lattice approach to fermionic theories in 2D: The massive Thirring model”, Nucl. Phys. B, 290 (1987), 363–391  crossref  mathscinet  adsnasa
26. C. Itzykson, J.-M. Drouffe, Statistical Field Theory, V. 1, Cambridge Univ. Press, Cambridge, 1989  zmath
27. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1975  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025