RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2007, Volume 351, Pages 54–78 (Mi znsl26)

Sharp dilation-type inequalities with fixed parameter of convexity
S. G. Bobkov, F. L. Nazarov

References

1. S. G. Bobkov, “Large deviations via transference plans”, Adv. Math. Res., 2, Nova Sci. Publ., Hauppauge, NY, 2003, 151–175  mathscinet  zmath
2. S. G. Bobkov, “Large deviations and isoperimetry over convex probability measures with heavy tails”, Electr. J. Probab., 12 (2007), 1072–1100  mathscinet  zmath
3. C. Borell, “Convex measures on locally convex spaces”, Ark. Math., 12 (1974), 239–252  crossref  mathscinet  zmath
4. C. Borell, “Convex set functions in $d$-space”, Period. Math. Hungar., 6:2 (1975), 111–136  crossref  mathscinet
5. J. Bourgain, “On the distribution of polynomials on high dimensional convex sets”, Israel Seminar (GAFA) 1989–90, Lecture Notes in Math., 1469, 1991, 127–137  mathscinet  zmath
6. H. J. Brascamp, E. H. Lieb, “On extensions of the Brunn–Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389  crossref  mathscinet  zmath
7. M. Fradelizi, O. Guédon, “The extreme points of subsets of $s$-concave probabilities and a geometric localization theorem”, Discrete Comput. Geom., 31:2 (2004), 327–335  mathscinet  zmath
8. M. Fradelizi, O. Guédon, “A generalized localization theorem and geometric inequalities for convex bodies”, Adv. Math., 204:2 (2006), 509–529  crossref  mathscinet  zmath
9. M. L. Gromov, V. D. Milman, “Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces”, Compositio Math., 62:3 (1987), 263–282  mathscinet  zmath
10. O. Guédon, “Kahane-Khinchine type inequalities for negative exponents”, Mathematika, 46 (1999), 165–173  crossref  mathscinet  zmath
11. R. Kannan, L. Lovász, and M. Simonovits, “Isoperimetric problems for convex bodies and a localization lemma”, Discrete and Comput. Geom., 13 (1995), 541–559  crossref  mathscinet  zmath
12. H. Knothe, “Contributions to the theory of convex bodies”, Michigan Math. J., 4 (1957), 39–52  crossref  mathscinet  zmath
13. R. Latala, “On the equivalence between geometric and arithmetic means for logconcave measures”, Convex geometric analysis, Berkeley, CA, 1996, 123–127  mathscinet
14. L. Lovász, M. Simonovits, “Random walks in a convex body and an improved volume algorithm”, Random Structures and Algorithms, 4:3 (1993), 359–412  crossref  mathscinet  zmath
15. St. Petersburg Math. J., 14:2 (2003), 351–366  mathnet  mathscinet  zmath
16. L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Archive for Rat. Mech. Analysis, 5 (1960), 286–292  crossref  mathscinet  zmath  adsnasa
17. A. Prékopa, “Logarithmic concave measures with applications to stochastic programming”, Acta Sci. Math. Szeged, 32 (1971), 301–316  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025