|
|
|
References
|
|
|
1. |
S. G. Bobkov, “Large deviations via transference plans”, Adv. Math. Res., 2, Nova Sci. Publ., Hauppauge, NY, 2003, 151–175 |
2. |
S. G. Bobkov, “Large deviations and isoperimetry over convex probability measures with heavy tails”, Electr. J. Probab., 12 (2007), 1072–1100 |
3. |
C. Borell, “Convex measures on locally convex spaces”, Ark. Math., 12 (1974), 239–252 |
4. |
C. Borell, “Convex set functions in $d$-space”, Period. Math. Hungar., 6:2 (1975), 111–136 |
5. |
J. Bourgain, “On the distribution of polynomials on high dimensional convex sets”, Israel Seminar (GAFA) 1989–90, Lecture Notes in Math., 1469, 1991, 127–137 |
6. |
H. J. Brascamp, E. H. Lieb, “On extensions of the Brunn–Minkowski and Prekopa-Leindler theorems,
including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 |
7. |
M. Fradelizi, O. Guédon, “The extreme points of subsets of $s$-concave probabilities and a geometric localization theorem”, Discrete Comput. Geom., 31:2 (2004), 327–335 |
8. |
M. Fradelizi, O. Guédon, “A generalized localization theorem and geometric inequalities for convex bodies”, Adv. Math., 204:2 (2006), 509–529 |
9. |
M. L. Gromov, V. D. Milman, “Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces”, Compositio Math., 62:3 (1987), 263–282 |
10. |
O. Guédon, “Kahane-Khinchine type inequalities for negative exponents”, Mathematika, 46 (1999), 165–173 |
11. |
R. Kannan, L. Lovász, and M. Simonovits, “Isoperimetric problems for convex bodies and a localization lemma”, Discrete and Comput. Geom., 13 (1995), 541–559 |
12. |
H. Knothe, “Contributions to the theory of convex bodies”, Michigan Math. J., 4 (1957), 39–52 |
13. |
R. Latala, “On the equivalence between geometric and arithmetic means for logconcave measures”, Convex geometric analysis, Berkeley, CA, 1996, 123–127 |
14. |
L. Lovász, M. Simonovits, “Random walks in a convex body and an improved volume algorithm”, Random Structures and Algorithms, 4:3 (1993), 359–412 |
15. |
St. Petersburg Math. J., 14:2 (2003), 351–366 |
16. |
L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Archive for Rat. Mech. Analysis, 5 (1960), 286–292 |
17. |
A. Prékopa, “Logarithmic concave measures with applications to stochastic programming”, Acta Sci. Math. Szeged, 32 (1971), 301–316 |