RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2009, Volume 364, Pages 5–31 (Mi znsl3149)

A new strong invariance principle for sums of independent random vectors
U. Einmahl

References

1. E. Berger, Fast sichere Approximation von Partialsummen unabhängiger und stationärer ergodischer Folgen von Zufallsvektoren, Dissertation, Universität Göttingen, 1982
2. R. Bhatia, Matrix Analysis, Springer, New York, 1997  mathscinet  zmath
3. U. Einmahl, “Strong invariance principles for partial sums of independent random vectors”, Ann. Probab., 15 (1987), 1419–1440  crossref  mathscinet  zmath  isi
4. U. Einmahl, “A useful estimate in the multidimensional invariance principle”, Probab. Th. Rel. Fields, 76 (1987), 81–101  crossref  mathscinet  zmath  isi
5. U. Einmahl, “Extensions of results of Komlós, Major, and Tusnády to the multivariate case”, J. Multivar. Analysis, 28 (1989), 20–68  crossref  mathscinet  zmath  isi
6. U. Einmahl, “A generalization of Strassen's functional LIL”, J. Theor. Probab., 20 (2007), 901–915  crossref  mathscinet  zmath  isi
7. U. Einmahl, D. Li, “Some results on two-sided LIL behavior”, Ann. Probab., 33 (2005), 1601–1624  crossref  mathscinet  zmath  isi
8. U. Einmahl, D. Li, “Characterization of LIL behavior in Banach space”, Trans. Am. Math. Soc., 360 (2008), 6677–6693  crossref  mathscinet  zmath  isi
9. U. Einmahl, D. M. Mason, “Rates of clustering in Strassen's LIL for partial sum processes”, Probab. Theory Relat. Fields, 97 (1993), 479–487  crossref  mathscinet  zmath  isi
10. J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent r.v.'s and the sample d.f., II”, Z. Wahrsch. Verw. Gebiete, 34 (1976), 33–58  crossref  mathscinet  zmath
11. P. Major, “The approximation of partial sums of independent r.v.'s.”, Z. Wahrsch. Verw. Gebiete, 35 (1976), 213–220  crossref  mathscinet  zmath
12. P. Major, “An improvement of Strassen's invariance principle”, Ann. Probab., 7 (1979), 55–61  crossref  mathscinet  zmath
13. W. Philipp, “Almost sure invariance principles for sums of $B$-valued random variables”, Probability in Banach Spaces, II, Lect. Notes Math., 709, Springerd, Berlin, 1979, 171–193  crossref  mathscinet
14. A. I. Sakhanenko, “A New Way to Obtain Estimates in the Invariance Principle”, High Dimensional Probability, II, Progress in Probability, 7, Birkhäuser, Boston, 2000, 223–245  mathscinet
15. V. Strassen, “An invariance principle for the law of the iterated logarithm”, Z. Wahrsch. Verw. Gebiete, 3 (1964), 211–226  crossref  mathscinet  zmath
16. A. Zaitsev, “Multidimensional version of the results of Komlós, Major, and Tusnády for vectors with finite exponential moments”, ESAIM Probab. Statist., 2 (1998), 41–108  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025