RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2009, Volume 364, Pages 88–108 (Mi znsl3152)

Martingale-coboundary representation for a class of stationary random fields
M. I. Gordin

References

1. A. K. Basu, C. C. Y. Dorea, “On functional central limit theorem for stationary martingale random fields”, Acta Math. Acad. Sci. Hungar., 33:3–4 (1979), 307–316  crossref  mathscinet  zmath
2. R. Cairoli, J. B. Walsh, “Stochastic integrals in the plane”, Acta Math., 134 (1975), 111–183  crossref  mathscinet  zmath
3. C. M. Deo, “A functional central limit theorem for stationary random fields”, Ann. Probab., 3 (1975), 708–715  crossref  mathscinet  zmath
4. M. I. Gordin, “O tsentralnoi predelnoi teoreme dlya statsionarnykh sluchainykh posledovatelnostei”, DAN SSSR, 188:4 (1969), 739–741  mathnet  mathscinet  zmath
5. M. I. Gordin, “O povedenii dispersii summ znachenii sluchainykh velichin, obrazuyuschikh statsionarnyi protsess”, Teor. veroyatn. i eë primenen., 16 (1971), 484–494  mathnet  mathscinet  zmath
6. M. I. Gordin, B. A. Lifshits, “Tsentralnaya predelnaya teorema dlya statsionarnykh protsessov Markova”, DAN SSSR, 239:4 (1978), 766–767  mathnet  mathscinet  zmath
7. M. M. Leonenko, “Tsentralnaya predelnaya teorema dlya odnogo klassa sluchainykh polei”, Teor. veroyatn. i mat. statist. (Tashkent), 17 (1977), 87–93  mathscinet  zmath
8. V. P. Leonov, “O dispersii vremennykh srednikh statsionarnogo sluchainogo protsessa”, Teor. veroyatn. i eë primenen., 6 (1961), 93–101  mathnet  mathscinet  zmath
9. H. Dehling, M. Denker, M. Gordin, “$U$- and $V$-statistics of a measure preserving transformation: central limit theorems” (to appear)
10. K. Fukuyama, B. Petit, “Le théorème limite central pour les suites de R. C. Baker”, Ergodic theory dynam. systems, 21 (2001), 479–492  crossref  mathscinet  zmath
11. M. Gordin, M. Weber, “Degeneration in the central limit theorem for a class of multidimensional actions” (to appear)
12. N. Maigret, “Théorème de limite centrale fonctionnel pour une chaîne de Markov récurrente au sens de Harris et positive”, Ann. Inst. H. Poincaré Sect. B (N.S.), 14:4 (1978), 425–440  mathscinet  zmath
13. M. Maxwell, M. Woodroofe, “Central limit theorems for additive functionals of Markov chains”, Ann. Probab., 28:2 (2000), 713–724  crossref  mathscinet  zmath
14. M. Peligrad, S. Utev, “A new maximal inequality and invariance principle for stationary sequences”, Ann. Probab., 33:2 (2005), 798–815  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025