RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2009, Volume 364, Pages 120–147 (Mi znsl3154)

A multivariate Bahadur–Kiefer representation for the empirical copula process
P. Deheuvels

References

1. N. Castelle, “Approximations fortes pour des processus bivariés”, Canad. J. Math., 54 (2002), 533–553  crossref  mathscinet  zmath  isi
2. N. Castelle, F. Laurent-Bonvalot, “Strong approximation of bivariate uniform empirical processes”, Ann. Inst. H. Poincaré Ser. B Probab. Statist., 34 (1998), 425–480  crossref  mathscinet  zmath  adsnasa  isi
3. K. L. Chung, “An estimate concerning the Kolmogorov limit distributions”, Trans. Amer. Math. Soc., 67 (1949), 36–50  crossref  mathscinet  zmath
4. C. M. Cuadras, J. Fortiana, J. A. Rodriguez-Lallena, Distributions with Given Marginals and Statistical Modelling, Kluwer, Dordrecht, 2002  mathscinet
5. G. Dall'Aglio, S. Kotz, G. Salinetti, Advances in Probability Distributions with Given Marginals, Kluwer, Dordrecht, 1991  mathscinet  zmath
6. P. Deheuvels, “Caractérisation complète des lois extrêmes multivariées et de la convergence des types extrêmes”, Publ. Inst. Statist. Univ. Paris, 23 (1978), 1–36  mathscinet  zmath
7. P. Deheuvels, “Propriétés d'existence et propriétés topologiques des fonctions de dépendance”, C. R. Acad. Sci. Paris Ser. A, 288 (1979), 217–220  mathscinet  zmath
8. P. Deheuvels, “La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance”, Bull. Acad. Roy. Belg. Cl. Sci., 65 (1979), 274–292  mathscinet  zmath
9. P. Deheuvels, “Some applications of the dependence functions to statistical inference: Nonparametric estimates of extreme values distributions, and a Kiefer type universal bound for the uniform test of independence”, Coll. Math. János Bolyai, 32 (1980), 183–201  mathscinet
10. P. Deheuvels, D. M. Mason, “Bahadur–Kiefer processes”, Ann. Probab., 18 (1990), 669–697  crossref  mathscinet  zmath  isi
11. P. Deheuvels, “Weighted multivariate tests of independence”, Communications in Statistics, Theory and Methods, 36 (2007), 2477–2491  crossref  mathscinet  zmath  isi
12. P. Deheuvels, G. Peccati, M. Yor, “On quadratic functionals of the Brownian sheet and related processes”, Stochastic Processes Appl., 116 (2006), 493–538  crossref  mathscinet  zmath  isi
13. E. Del Barrio, P. Deheuvels, S. van de Geer, Lectures on Empirical Processes, EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich, 2007  mathscinet
14. R. Féron, “Sur les tableaux de corrélation dont les marges sont données, cas de l'espace à trois dimensions”, Publ. Inst. Statist. Univ. Paris, 5 (1956), 3–12  mathscinet
15. H. Finkelstein, “The law of the iterated logarithm for empirical distributions”, Ann. Math. Statist., 42 (1971), 607–615  crossref  mathscinet  zmath
16. M. Fréchét, “Sur les tableaux de corrélation dont les marges sont données”, Ann. Univ. Lyon, A14 (1951), 53–77  mathscinet  zmath
17. C. Genest, R. J. MacKay, “The joy of copulas: Bivariate distributions with uniform marginals”, Amer. Statist., 40 (1986), 280–285  crossref  mathscinet  isi
18. J. Hájek, Z. S̆idák, Theory of Rank Tests, Academic Press, New York, 1967  mathscinet
19. J. Kiefer, “Deviations between the sample quantile process and the sample d.f.”, Nonparametric Techniques in Statistical Inference, ed. M. L. Puri, Cambridge Univ., 1970, 299–319  mathscinet
20. T. L. Lai, “Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes”, Z. Wahrsch. verw. Gebiete, 29 (1974), 7–19  crossref  mathscinet  zmath
21. P. Massart, “Strong approximation for multivariate empirical and related processes, via KMT constructions”, Ann. Probab., 17 (1989), 266–291  crossref  mathscinet  zmath  isi
22. R. B. Nelsen, An Introduction to Copulas, Lect. Notes Statist., 139, Springer, New York, 1999  crossref  mathscinet  zmath
23. L. Rüschendorf, “Asymptotic distributions of multivariate rank order statistics”, Ann. Statist., 4 (1976), 912–923  crossref  mathscinet  zmath
24. L. Rüschendorf, “Constructions of multivariate distributions with given marginals”, Ann. Inst. Statist. Math., 37 (1985), 225–233  crossref  mathscinet  zmath  isi
25. G. R. Shorack, “Kiefer's theorem via the Hungarian construction”, Z. Wahrsch. verw. Gebiete, 61 (1982), 369–373  crossref  mathscinet  zmath  isi
26. G. R. Shorack, J. A. Wellner, Empirical Processes with Application to Statistics, Wiley, New York, 1986  mathscinet  zmath
27. B. Schweizer, “Thirty years of copulas”, Advances in Probability Distributions with Given Marginals, eds. Dall'Aglio G. et al., Kluwer, Dordrecht, 1991, 13–50  crossref  mathscinet
28. A. Sklar, “Fonctions de répartition à $n$ dimensions et leurs marges”, Publ. Inst. Statist. Univ. Paris, 8 (1959), 229–231  mathscinet
29. A. Sklar, “Random variables, joint distribution functions, and copulas”, Kybernetika, 9 (1973), 449–460  mathscinet  zmath
30. W. Stute, “The oscillation behavior of empirical pracesses: The multivariate case”, Ann. Probab., 12 (1984), 361–379  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025