|
|
|
References
|
|
|
1. |
N. Castelle, “Approximations fortes pour des processus bivariés”, Canad. J. Math., 54 (2002), 533–553 |
2. |
N. Castelle, F. Laurent-Bonvalot, “Strong approximation of bivariate uniform empirical processes”, Ann. Inst. H. Poincaré Ser. B Probab. Statist., 34 (1998), 425–480 |
3. |
K. L. Chung, “An estimate concerning the Kolmogorov limit distributions”, Trans. Amer. Math. Soc., 67 (1949), 36–50 |
4. |
C. M. Cuadras, J. Fortiana, J. A. Rodriguez-Lallena, Distributions with Given Marginals and Statistical Modelling, Kluwer, Dordrecht, 2002 |
5. |
G. Dall'Aglio, S. Kotz, G. Salinetti, Advances in Probability Distributions with Given Marginals, Kluwer, Dordrecht, 1991 |
6. |
P. Deheuvels, “Caractérisation complète des lois extrêmes multivariées et
de la convergence des types extrêmes”, Publ. Inst. Statist. Univ. Paris, 23 (1978), 1–36 |
7. |
P. Deheuvels, “Propriétés d'existence et propriétés topologiques des
fonctions de dépendance”, C. R. Acad. Sci. Paris Ser. A, 288 (1979), 217–220 |
8. |
P. Deheuvels, “La fonction de dépendance empirique et ses propriétés. Un
test non paramétrique d'indépendance”, Bull. Acad. Roy. Belg. Cl. Sci., 65 (1979), 274–292 |
9. |
P. Deheuvels, “Some applications of the dependence functions to statistical
inference: Nonparametric estimates of extreme values distributions, and
a Kiefer type universal bound for the uniform test of independence”, Coll. Math. János Bolyai, 32 (1980), 183–201 |
10. |
P. Deheuvels, D. M. Mason, “Bahadur–Kiefer processes”, Ann. Probab., 18 (1990), 669–697 |
11. |
P. Deheuvels, “Weighted multivariate tests of independence”, Communications in Statistics, Theory and Methods, 36 (2007), 2477–2491 |
12. |
P. Deheuvels, G. Peccati, M. Yor, “On quadratic functionals of the Brownian sheet and related processes”, Stochastic Processes Appl., 116 (2006), 493–538 |
13. |
E. Del Barrio, P. Deheuvels, S. van de Geer, Lectures on Empirical Processes, EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich, 2007 |
14. |
R. Féron, “Sur les tableaux de corrélation dont les marges sont données,
cas de l'espace à trois dimensions”, Publ. Inst. Statist. Univ. Paris, 5 (1956), 3–12 |
15. |
H. Finkelstein, “The law of the iterated logarithm for empirical distributions”, Ann. Math. Statist., 42 (1971), 607–615 |
16. |
M. Fréchét, “Sur les tableaux de corrélation dont les marges sont données”, Ann. Univ. Lyon, A14 (1951), 53–77 |
17. |
C. Genest, R. J. MacKay, “The joy of copulas: Bivariate distributions with uniform marginals”, Amer. Statist., 40 (1986), 280–285 |
18. |
J. Hájek, Z. S̆idák, Theory of Rank Tests, Academic Press, New York, 1967 |
19. |
J. Kiefer, “Deviations between the sample quantile process and the sample d.f.”, Nonparametric Techniques in Statistical Inference, ed. M. L. Puri, Cambridge Univ., 1970, 299–319 |
20. |
T. L. Lai, “Reproducing kernel Hilbert spaces and the law of the iterated
logarithm for Gaussian processes”, Z. Wahrsch. verw. Gebiete, 29 (1974), 7–19 |
21. |
P. Massart, “Strong approximation for multivariate empirical and related processes,
via KMT constructions”, Ann. Probab., 17 (1989), 266–291 |
22. |
R. B. Nelsen, An Introduction to Copulas, Lect. Notes Statist., 139, Springer, New York, 1999 |
23. |
L. Rüschendorf, “Asymptotic distributions of multivariate rank order statistics”, Ann. Statist., 4 (1976), 912–923 |
24. |
L. Rüschendorf, “Constructions of multivariate distributions with given marginals”, Ann. Inst. Statist. Math., 37 (1985), 225–233 |
25. |
G. R. Shorack, “Kiefer's theorem via the Hungarian construction”, Z. Wahrsch. verw. Gebiete, 61 (1982), 369–373 |
26. |
G. R. Shorack, J. A. Wellner, Empirical Processes with Application to Statistics, Wiley, New York, 1986 |
27. |
B. Schweizer, “Thirty years of copulas”, Advances in Probability Distributions with Given Marginals, eds. Dall'Aglio G. et al., Kluwer, Dordrecht, 1991, 13–50 |
28. |
A. Sklar, “Fonctions de répartition à $n$ dimensions et leurs marges”, Publ. Inst. Statist. Univ. Paris, 8 (1959), 229–231 |
29. |
A. Sklar, “Random variables, joint distribution functions, and copulas”, Kybernetika, 9 (1973), 449–460 |
30. |
W. Stute, “The oscillation behavior of empirical pracesses: The multivariate case”, Ann. Probab., 12 (1984), 361–379 |