|
|
|
References
|
|
|
1. |
P. Bártfai, “Die Bestimmung der zu einem wiederkehrenden Prozess gehörenden
Verteilungfunktion aus den mit Fehlern behafteten Daten einer einzigen
Realisation”, Studia Sci. Math. Hungar., 1 (1966), 161–168 |
2. |
I. Berkes, W. Philipp, “Approximation theorems for independent and weakly dependent random
vectors”, Ann. Probab., 17 (1979), 29–54 |
3. |
E. Berger, Fast sichere Approximation von Partialsummen unabhängiger und
stationärer ergodischer Folgen von Zufallsvectoren, Dissertation, Universität Göttingen, 1982 |
4. |
A. A. Borovkov, “O skorosti skhodimosti v printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 18 (1973), 217–234 |
5. |
A. A. Borovkov, A. I. Sakhanenko, “On the rate of convergence in invariance principle”, Lect. Notes Math., 1021, 1981, 59–66 |
6. |
A. A. Borovkov, A. I. Sakhanenko, “Skorosti skhodimosti v printsipe invariantnosti dlya banakhovykh prostranstv”, Teoriya veroyatn. i ee primen., 25:4 (1980), 734–744 |
7. |
L. Breiman, “On the tail behaviour of sums of independent random variables”, Z. Wahrscheinlichkeitstheor. verw. Geb., 9 (1967), 20–24 |
8. |
M. Csörgő, P. Révész, “A new method to prove Strassen type laws of invariance principle. I”, Z. Wahrscheinlichkeitstheor. verw. Geb., 31 (1975), 255–259 ; “II”, 261–269 |
9. |
M. Csörgő, P. Révész, Strong approximations in probability and statistics, Academic Press, New York, 1981 |
10. |
S. Csörgő, P. Hall, “The Komlós–Major–Tusnády approximations and their applications”, Austral. J. Statist., 26:2 (1984), 189–218 |
11. |
U. Einmahl, A refinement of the KMT inequality for partial sum strong approximation, Techn. Rep. Ser. Lab. Res. Statist. Probab., 88, Carleton University, University of Ottawa, Ottawa, Canada, 1986 |
12. |
U. Einmahl, “A useful estimate in the multidimensional invariance principle”, Probab. Theor. Rel. Fields, 76 (1987), 81–101 |
13. |
U. Einmahl, “Strong invariance principles for partial sums of independent random
vectors”, Ann. Probab., 15 (1987), 1419–1440 |
14. |
U. Einmahl, “Extensions of results of Komlós, Major, and Tusnády to the
multivariate case”, J. Multivar. Anal., 28 (1989), 20–68 |
15. |
U. Einmahl, “A new strong invariance principle for sums of independent random
vectors”, Zap. nauchn. semin. POMI, 364, POMI, SPb., 2009, 5–31 |
16. |
U. Einmahl, D. M. Mason, “Rates of clustering in Strassen's LIL for partial sums processes”, Probab. Theor. Rel. Fields, 97 (1993), 479–487 |
17. |
F. Götze, A. Yu. Zaitsev, “Bounds for the rate of strong approximation in the multidimensional
invariance principle”, Teoriya veroyatn. i ee primen., 53 (2008), 100–123 |
18. |
V. V. Gorodetskii, “O skorosti skhodimosti v mnogomernom printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 20 (1975), 642–649 |
19. |
N. C. Jain, K. Jogdeo, W. F. Stout, “Upper and lower functions for martingales and mixing processes”, Ann. Probab., 3 (1975), 119–145 |
20. |
J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV'-s and the sample
DF. I”, Z. Wahrscheinlichkeitstheor. verw. Geb., 32 (1975), 111–131 ; “II”, 34 (1976), 34–58 |
21. |
P. Major, “The approximation of partial sums of independent r.v.'s”, Z. Wahrscheinlichkeitstheor. verw. Geb., 35 (1976), 213–220 |
22. |
P. Major, “Approximation of partial sums of i.i.d.r.v.'s when summands have only
two moments”, Z. Wahrscheinlichkeitstheor. verw. Geb., 35 (1976), 221–230 |
23. |
P. Major, “On the invariance principle for sums of independent identically
distributed random variables”, J. Multivar. Anal., 8 (1978), 487–517 |
24. |
P. Major, “An improvement of Strassen's invariance principle”, Ann. Probab., 7 (1979), 55–61 |
25. |
V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 |
26. |
W. Philipp, “Almost sure invariance principles for sums of $B$-valued random variables”, Lect. Notes in Math., 709, 1979, 171–193 |
27. |
Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 |
28. |
A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh
velichin s eksponentsialnymi momentami”, Trudy inst. matem. SO AN SSSR, 3, Nauka, Novosibirsk, 1984, 4–49 |
29. |
A. I. Sakhanenko, “Otsenki v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 5, Nauka, Novosibirsk, 1985, 27–44 |
30. |
A. I. Sakhanenko, “O tochnosti silnoi normalnoi approksimatsii v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 13, Nauka, Novosibirsk, 1989, 40–66 |
31. |
A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle”, High dimensional probability, II (Seattle, 1999), Progr. Probab., 47, Birkhäuser Boston, Boston, 2000, 223–245 |
32. |
A. I. Sakhanenko, “Otsenki v printsipe invariantnosti v terminakh srezannykh stepennykh momentov”, Sibirskii matem. zhurn., 47 (2006), 1355–1371 |
33. |
Qi-Man Shao, “On a problem of Csörgő and Révész”, Ann. Probab., 17 (1989), 809–812 |
34. |
Qi-Man Shao, “Strong approximation theorems for independent random variables
and their applications”, J. Multivar. Anal., 52 (1995), 107–130 |
35. |
A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievsk. un-ta, Kiev, 1961 |
36. |
V. Strassen, “An invariance principle for the law of iterated logarithm”, Z. Wahrscheinlichkeitstheor. verw. Geb., 3 (1967), 211–226 |
37. |
V. Strassen, “Almost sure behavior of sums of independent random variables
and martingales”, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, V. II: Contributions to Probability Theory, Part 1 (Berkeley, CA, 1965/66), Univ. California Press, Berkeley, CA, 1967, 315–343 |
38. |
A. Yu. Zaitsev, “Otsenki rasstoyaniya Levi–Prokhorova v mnogomernoi tsentralnoi
predelnoi teoreme dlya sluchainykh velichin s konechnymi eksponentsialnymi momentami”, Teoriya veroyatn. i ee primen., 31 (1986), 246–265 |
39. |
A. Yu. Zaitsev, “Multidimensional version of the results of Komlós, Major, and
Tusnády for vectors with finite exponential moments”, ESAIM: Probability and Statistics, 2 (1998), 41–108 |
40. |
A. Yu. Zaitsev, “Multidimensional version of the results of Sakhanenko in the
invariance principle for vectors with finite exponential moments. I”, Teoriya veroyatn. i primen., 45 (2000), 718–738 ; “II”, 46 (2001), 535–561 ; “III”, 46 (2001), 744–769 |
41. |
A. Yu. Zaitsev, “On the strong gaussian approximation in multidimensional case”, Annales de l'I.S.U.P. Publications de l'Institut de Statistique de
l'Université de Paris, 45 (2001), 3–7 |
42. |
A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional Central
Limit Theorem”, Proceedings of the International Congress of Mathematicians, Vol. III. Invited Lectures (Bejing, 2002), 2002, 107–116 |
43. |
A. Yu. Zaitsev, “Otsenki tochnosti silnoi approksimatsii v mnogomernom printsipe
invariantnosti”, Zap. nauchn. semin. POMI, 339, 2006, 37–53 |
44. |
A. Yu. Zaitsev, “Otsenki tochnosti silnoi gaussovskoi approksimatsii summ nezavisimykh
odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. POMI, 351, 2007, 141–157 |