RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2005, Volume 326, Pages 183–197 (Mi znsl342)

$*$-algebras of unbounded operators affiliated with a von Neumann algebra
M. A. Muratov, V. I. Chilin

References

1. I. E. Segal, “A noncommutative extension of abstract integration”, Ann. Math., 57 (1953), 401–457  crossref  mathscinet  zmath
2. E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15 (1974), 103–116  crossref  mathscinet  zmath
3. F. J. Yeadon, “Non-commutative $L^P$-spaces”, Math. Proc. Camb. Phil. Soc., 77 (1975), 91–102  crossref  mathscinet  zmath
4. T. Fack, H. Kosaki, “Generalized $s$-numbers of $\tau$-mesaurable operators”, Pacific J. Math., 123 (1986), 269–300  mathscinet  zmath
5. P. G. Dixon, “Unbounded operator algebras”, Proc. London Math. Soc., 23 (1971), 53–59  crossref  mathscinet
6. S. Sankaran, “The $*$-algebra of unbounded operators”, J. London Math. Soc., 34 (1959), 337–344  crossref  mathscinet  zmath
7. F. J. Yeadon, “Convergence of measurable operators”, Proc. Camb. Phil. Soc., 74 (1973), 257–268  crossref  mathscinet  zmath
8. B. S. Zakirov, V. I. Chilin, “Abstraktnaya kharakterizatsiya $EW^*$-algebr”, Funkts. anal. i ego prilozh., 25:1 (1991), 76–78  mathnet  mathscinet  zmath
9. S. Stratila, L. Zsido, Lectures on von Neumann algebras, Abacus Press, 1979  mathscinet  zmath
10. M. Takesaki, Theory of operator algebras, I, Springer, New York, 1979  mathscinet
11. K. Saito, “On the algebra of measurable operators for a general $AW^*$-algebra, II”, Tohoku. Math. J., 23 (1971), 525–534  crossref  mathscinet


© Steklov Math. Inst. of RAS, 2025