|
|
|
Литература
|
|
|
1. |
J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamer., 1:2 (1985), 1–14 |
2. |
Jean-Lin Journé, “Calderón–Zygmund operators on product spaces”, Rev. Mat. Iberoamer., 1:3 (1985), 55–91 |
3. |
С. В. Кисляков, Д. В. Парилов, “О теореме Литлвуда–Пэли для произвольных интервалов”, Зап. научн. сем. ПОМИ, 327, 2005, 98–114 |
4. |
Robert Fefferman, “Calderón–Zygmund theory for product domains: $H^p$ spaces”, Proc. Natl. Acad. Sci. USA, 83 (1986), 840–843 |
5. |
Н. Н. Осипов, “Неравенство Литлвуда–Пэли для произвольных прямоугольников в $\mathbb R^2$ при $0<p\leq2$”, Алгебра и анализ, 22:2 (2010), 164–184 |
6. |
Anthony Carbery, Andreas Seeger, “$H^p$- and $L^p$-variants of multiparameter Calderón–Zygmund theory”, Trans. Amer. Math. Soc., 334:2 (1992), 719–747 |
7. |
C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 |
8. |
R. F. Gundy, E. M. Stein, “$H^p$ theory for the poly-disc”, Proc. Natl. Acad. Sci. USA, 76 (1979), 1026–1029 |
9. |
Shuichi Sato, “Lusin functions and nontangential maximal functions in the $H^p$ theory on the product of upper half-spaces”, Tôhoku Math. Journ., 37 (1985), 1–13 |
10. |
Sun-Yung A. Chang, Robert Fefferman, “A continuous version of duality of $H^1$ with $BMO$ on the bidisc”, Ann. of Math., 112:1 (1980), 179–201 |
11. |
Elias M. Stein, Singular integrals and differentiability properties of function, Princeton, 1970 |
12. |
С. В. Кисляков, “Теорема Литлвуда–Пэли для произвольных интервалов: весовые оценки”, Зап. научн. сем. ПОМИ, 355, 2008, 180–198 |
13. |
Quanhua Xu, “Some properties of the quotient space $(L^1(\mathbf T^d)/H^1(D^d))$”, Illinois J. of Math., 37:3 (1993), 437–454 |