RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ

Зап. научн. сем. ПОМИ, 2010, том 377, страницы 78–90 (Mi znsl3816)

Towards finite-fold Diophantine representations
Yu. Matiyasevich

Литература

1. A. Baker, H. Davenport,, “The equations $3x^2-2=y^2$ and $8x^2-7=z^2$”, Quart. J. Math. Oxford Ser. (2), 20 (1969), 129–137  crossref  mathscinet  zmath
2. G. Chaitin, Algorithmic Information Theory, Cambridge University Press, Cambridge, England, 1987  mathscinet  zmath
3. Г. В. Чудновский, Некоторые алгоритмические проблемы, Препринт IM-71-3, АН Укр. ССР, Институт Математики, Киев, 1971
4. G. V. Chudnovsky, “Some Diophantine problems”, Contributions to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984, 265–295  crossref  mathscinet
5. M. Davis, “Arithmetical problems and recursively enumerable predicates”, J. Symbolic Logic, 18:1 (1953), 33–41  crossref  mathscinet  zmath
6. M. Davis, H. Putnam, J. Robinson, “The decision problem for exponential Diophantine equations”, Ann. Math. (2), 74 (1961), 425–436  crossref  mathscinet  zmath; reprinted in: S. Feferman (ed.), The collected works of Julia Robinson, Collected Works, v. 6, Amer. Math. Soc., Providence, RI, 1996  mathscinet
7. M. Davis, “One equation to rule them all”, Transactions of the New York Academy of Sciences. Series II, 30:6 (1968), 766–773  crossref  zmath
8. M. Davis, “On the number of solutions of Diophantine equations”, Proc. Amer. Math. Soc., 35 (1972), 552–554  crossref  mathscinet  zmath
9. O. Herrman, “A nontrivial solution of the Diophantine equation $9(x^2+7y^2)^2-7(u^2+7v^2)^2=2$”, Computers in Number Theory, eds. A. O. L. Atkin, B. J. Birch, Academic Press, London, 1971, 207–212  mathscinet  zmath
10. D. Hilbert, “Mathematische Probleme”, Vortrag, gehalten auf dem internationalen Mathematiker Kongress zu Paris 1900, Nachr. K. Ges. Wiss., Math. Phys. Kl., Göttingen, 1900, 253–297  zmath; English translation: Reprinted in: Mathematical Developments arising from Hilbert problems, Proceedings of Symposia in Pure Mathematics, 28, ed. Browder Ed., American Mathematical Society, 1976, 1–34  mathscinet  adsnasa
11. J. P. Jones, Yu. V. Matijasevič, “A new representation for the symmetric binomial coefficient and its applications”, Annales Sci. Mathém. du Québec, 6:1 (1982), 81–97  mathscinet  zmath
12. E. E. Kummer, “Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen”, J. reine angew. Math., 44 (1852), 93–146  crossref  zmath
13. D. H. Lehmer, “Continued fractions containing arithmetic progressions”, Scripta Math., 29 (1973), 17–24  mathscinet  zmath
14. H. Levitz, “Decidability of some problem pertaining to base 2 exponential Diophantine equations”, Zeitschrift Math. Logik Grundlagen Math., 31:2 (1985), 109–115  crossref  mathscinet  zmath  isi
15. Ю. В. Матиясевич, “Диофантовость перечислимых множеств”, ДАН СССР, 191:2 (1970), 279–282  mathnet  zmath; English translation: “Enumerable sets are Diophantine”, Soviet Math. Dokl., 11 (1970), 354–358  zmath
16. Ю. В. Матиясевич, “Существование неэффективизируемых оценок в теории экспоненциально диофантовых уравнений”, Зап. научн. семин. ЛОМИ, 40, 1974, 77–93  mathnet  mathscinet  zmath; English translation: “Existence of noneffectivizable estimates in the theory of exponential Diophantine equations”, J. of Soviet Mathematics, 8:3 (1977), 299–311  crossref  zmath
17. Ю. В. Матиясевич, “Алгоритмическая неразрешимость экспоненциально диофантовых уравнений с тремя неизвестными”, Теория алгорифмов и математическая логика, ВЦ АН СССР, Москва, 1979, 69–78  mathscinet; English translation: “Algorithmic unsolvability of exponential Diophantine equations in three unknowns”, Sel. Math. Sov., 3 (1984), 223–232  zmath
18. Ю. В. Матиясевич, Десятая проблема Гильберта, Наука, Физматлит, Москва, 1993  mathscinet  zmath; English translation: Hilbert's Tenth Problem, MIT Press, Cambridge (Massachusetts)–London, 1993  zmath; French translation: Le dixième Problème de Hilbert, Masson, Paris–Milan–Barselone, 1995; http://logic.pdmi.ras.ru/~yumat/H10Pbook
19. Yu. Matiyasevich, “Diophantine flavor of Kolmogorov complexity”, Trans. Inst. Informatics and Automation Problems National Acad. Sciences of Armenia, 27 (2006), 111–122
20. J. Mc Laughlin, “Some new families of Tasoevian and Hurwitzian continued fractions”, Acta Arith., 135:3 (2008), 247–268  crossref  mathscinet  zmath  adsnasa  isi
21. T. Ord, T. D. Kieu, “On the existence of a new family of Diophantine equations for $\Omega$”, Fundam. Inform., 56:3 (2003), 273–284  mathscinet  zmath  isi
22. K. Prasad, “Computability and randomness of Nash equilibrium in infinite games”, J. Mathem. Economics, 20:5 (1991), 429–442  crossref  mathscinet  zmath
23. P. Riyapan, V. Laohakosol, T. Chaichana, “Two types of explicit continued fractions”, Period. Math. Hungar., 52:2 (2006), 51–72  crossref  mathscinet  zmath
24. J. Robinson, “Existential definability in arithmetic”, Transactions of the American Mathematical Society, 72 (1952), 437–449  crossref  mathscinet  zmath; reprinted in: The Collected Works of Julia Robinson, Collected Works, 6, American Mathematical Society, Providence, RI, 1996, 47–59  mathscinet
25. D. Shanks, S. S. Wagstaff Jr., “48 more solutions of Martin Davis's quaternary quartic equation”, Math. Comp., 64:212 (1995), 1717–1731  mathscinet  zmath  adsnasa  isi
26. C. Smoryński, “A note on the number of zeros of polynomials and exponential polynomials”, J. Symbolic Logic, 42:1 (1977), 99–106  crossref  mathscinet  zmath
27. Б. Г. Тасоев, “Рациональные проиближения к некоторым бесконечным цепным дробям”, Труды тбилисского университета. Мат., мех., астроном., 24, 1988, 104–138  mathscinet  zmath


© МИАН, 2025