RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2010, Volume 380, Pages 8–30 (Mi znsl3843)

On reconstruction of Riemannian manifold via boundary data: theory and plan of numerical testing
M. I. Belishev

References

1. S. A. Avdonin, M. I. Belishev, S. A. Ivanov, “Upravlyaemost v zapolnennoi oblasti dlya mnogomernogo volnovogo uravneniya s singulyarnym upravleniem”, Zap. nauch. semin. POMI, 210, 1993, 3–14
2. M. I. Belishev, “K obosnovaniyu pravila Gyuigensa”, Zap. nauch. semin. POMI, 218, 1994, 17–24  mathnet  mathscinet  zmath
3. M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45  crossref  mathscinet  zmath  isi
4. M. I. Belishev, “On relations between spectral and dynamical inverse data”, J. Inverse and Ill-Posed Problems, 9:6 (2001), 547–565  crossref  mathscinet  zmath
5. M. I. Belishev, “O svyazi dannykh dinamicheskikh i spektralnykh obratnykh zadach”, Zap. nauch. semin. POMI, 297, 2003, 30–48  mathnet  mathscinet  zmath
6. M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67  crossref  mathscinet  zmath  isi
7. M. I. Belishev, M. N. Demchenko, “Time-optimal reconstruction of Riemannian manifold via boundary electromagnetic measurements”, Inverse Problems, 26 (2010) (to appear)
8. D. Gromol, W. Klingenberg, W. Meyer, Riemannische Geometrie im Grossen, Springer, Berlin, 1968  mathscinet  zmath
9. W. Klingenberg, Riemannian geometry, de Gruyer Studies in Mathematics, 1, Walter de Gruyter, 1982  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025