RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2010, Volume 380, Pages 110–131 (Mi znsl3848)

The point spectrum of water-wave problem in intersecting canals
S. A. Nazarov

References

1. N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002  mathscinet  zmath
2. D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova, Lokalizatsiya lineinykh voln, Izd-vo S.-Peterb. un-ta, SPb., 2007
3. O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973  mathscinet
4. S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Mat. sb., 199:12 (2008), 53–78  mathnet  crossref  mathscinet  zmath  elib
5. S. A. Nazarov, “Prostoi sposob obnaruzheniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Dokl. RAN, 429:6 (2009), 746–749  mathnet  mathscinet  zmath  elib
6. S. A. Nazarov, “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauch. semin. peterburg. otd-niya mat. in-ta RAN, 348, 2007, 99–126  mathnet
7. M. D. Groves, “On the existence of trapped modes in channels of arbitrary cross-sections”, Math. Meth. Appl. Sci., 20 (1997), 521–545  crossref  mathscinet  zmath  isi
8. C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave motion, 45 (2007), 16–29  crossref  mathscinet  zmath  isi  elib
9. S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka., M., 1991
10. F. Ursell, “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 18 (1988), 495–503  mathscinet
11. D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Camb. Phil. Soc., 49 (1953), 668–684  crossref  mathscinet  zmath
12. D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31  crossref  mathscinet  zmath  adsnasa  isi
13. A.-S. Bonnet-Bendhia, J. Duterte, P. Joly, “Mathematical analysis of elastic surface waves in topographic waveguides”, Mathematical Models and Methods in Applied Science, 9:5 (1999), 755–798  crossref  mathscinet  isi
14. N. Kuznetsov, R. Porter, D. V. Evans, M. J. Simon, “Uniqueness and trapped modes for surface–piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368  crossref  mathscinet  zmath  adsnasa  isi
15. I. V. Kamotskii, S. A. Nazarov, “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Dokl. RAN, 368:6 (1999), 771–773  mathnet  mathscinet  zmath
16. I. V. Kamotskii, S. A. Nazarov, “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Matem. zametki, 73:1 (2003), 138–140  mathnet  crossref  mathscinet  zmath
17. S. A. Nazarov, “A novel approach for detecting trapped surface waves in a canal with periodic underwater topography”, C. R. Mecanique, 337:8 (2009), 610–615  crossref  adsnasa  isi  elib
18. S. A. Nazarov, “Dostatochnye usloviya poyavleniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Zap. nauch. semin. peterburg. otd-niya mat. in-ta RAN, 369, 2009, 202–223  mathnet
19. M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980  mathscinet
20. S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., 2008, 261–309  crossref  mathscinet
21. R. L. Shult, D. G. Ravenhall, H. D. Wyld, “Quamtum bound states in a classically unbounded system of crossed wires”, Phys. Rev. B, 39:8 (1989), 5476–5479  crossref  adsnasa  isi
22. Y. Avishai, D. Bessis, B. G. Giraud, G. Mantica, “Quantum bound states in open geometries”, Phys. Rev. B, 44:15 (1991), 8028–8034  crossref  adsnasa  isi
23. P. Duclos, P. Exner, “Curvature-induced bound sttes in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102  crossref  mathscinet  zmath  isi
24. S. A. Nazarov, “Diskretnyi spektr kolenchatykh, razvetvlyayuschikhsya i periodicheskikh volnovodov”, Algebra i analiz (to appear)


© Steklov Math. Inst. of RAS, 2025