|
|
|
References
|
|
|
1. |
N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002 |
2. |
D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova, Lokalizatsiya lineinykh voln, Izd-vo S.-Peterb. un-ta, SPb., 2007 |
3. |
O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 |
4. |
S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Mat. sb., 199:12 (2008), 53–78 |
5. |
S. A. Nazarov, “Prostoi sposob obnaruzheniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Dokl. RAN, 429:6 (2009), 746–749 |
6. |
S. A. Nazarov, “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauch. semin. peterburg. otd-niya mat. in-ta RAN, 348, 2007, 99–126 |
7. |
M. D. Groves, “On the existence of trapped modes in channels of arbitrary cross-sections”, Math. Meth. Appl. Sci., 20 (1997), 521–545 |
8. |
C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave motion, 45 (2007), 16–29 |
9. |
S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka., M., 1991 |
10. |
F. Ursell, “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 18 (1988), 495–503 |
11. |
D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Camb. Phil. Soc., 49 (1953), 668–684 |
12. |
D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 |
13. |
A.-S. Bonnet-Bendhia, J. Duterte, P. Joly, “Mathematical analysis of elastic surface waves in topographic waveguides”, Mathematical Models and Methods in Applied Science, 9:5 (1999), 755–798 |
14. |
N. Kuznetsov, R. Porter, D. V. Evans, M. J. Simon, “Uniqueness and trapped modes for surface–piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 |
15. |
I. V. Kamotskii, S. A. Nazarov, “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Dokl. RAN, 368:6 (1999), 771–773 |
16. |
I. V. Kamotskii, S. A. Nazarov, “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Matem. zametki, 73:1 (2003), 138–140 |
17. |
S. A. Nazarov, “A novel approach for detecting trapped surface waves in a canal with periodic underwater topography”, C. R. Mecanique, 337:8 (2009), 610–615 |
18. |
S. A. Nazarov, “Dostatochnye usloviya poyavleniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Zap. nauch. semin. peterburg. otd-niya mat. in-ta RAN, 369, 2009, 202–223 |
19. |
M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980 |
20. |
S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., 2008, 261–309 |
21. |
R. L. Shult, D. G. Ravenhall, H. D. Wyld, “Quamtum bound states in a classically unbounded system of crossed wires”, Phys. Rev. B, 39:8 (1989), 5476–5479 |
22. |
Y. Avishai, D. Bessis, B. G. Giraud, G. Mantica, “Quantum bound states in open geometries”, Phys. Rev. B, 44:15 (1991), 8028–8034 |
23. |
P. Duclos, P. Exner, “Curvature-induced bound sttes in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 |
24. |
S. A. Nazarov, “Diskretnyi spektr kolenchatykh, razvetvlyayuschikhsya i periodicheskikh volnovodov”, Algebra i analiz (to appear) |